首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   8篇
  国内免费   25篇
化学   160篇
晶体学   2篇
力学   8篇
物理学   12篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   5篇
  2017年   3篇
  2016年   4篇
  2015年   5篇
  2014年   4篇
  2013年   13篇
  2012年   6篇
  2011年   10篇
  2010年   10篇
  2009年   11篇
  2008年   7篇
  2007年   9篇
  2006年   4篇
  2005年   11篇
  2004年   3篇
  2003年   7篇
  2002年   5篇
  2001年   2篇
  2000年   5篇
  1999年   7篇
  1998年   6篇
  1997年   10篇
  1996年   4篇
  1995年   7篇
  1994年   5篇
  1993年   4篇
  1992年   6篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
排序方式: 共有182条查询结果,搜索用时 31 毫秒
81.
A highly controllable and scalable process for fabrication of large amounts of concentrated lignin nanoparticles (LNPs) is reported. These lignin core nanoparticles are formed through flash nanoprecipitation, however, scaling up of the fabrication process requires fundamental understanding of their operational formation mechanism and surface properties. It is shown how a semicontinuous synthesis system with a recirculation loop makes it possible to produce flash precipitated lignin nanoparticles in large amounts for practical applications. The roles of the process parameters, including flow rates and lignin concentration, are investigated and analyzed. The results indicate that the LNPs are formed by a process of continuous burst nucleation at the point of mixing without diffusive growth, which yields nanoparticles of highly uniform size following a modified LaMer nucleation and growth mechanism. This mechanism makes possible facile process control and scale-up. Effective control of the resulting nanoparticle size is achieved through the initial concentration of lignin in the injected solution. The impressive capability to produce suspensions of any predesigned multimodal distribution is demonstrated. The resulting nanofabrication technique can produce large volumes of concentrated LNP suspensions of high stability and tightly controlled size distributions for biological or agricultural applications.  相似文献   
82.
Amine‐terminated monodisperse hard segments (MDHSs) containing two to four 4,4′‐methylenebis (phenyl isocyanate) extended by 1,4‐butanediol have been synthesized using carboxybenzyl protecting‐deprotecting strategy. Pure MDHSs in large scale were obtained in good yield and their structures were confirmed by 1H‐, 13C‐NMR spectroscopy and GPC‐MALLS. Differential scanning calorimetry (DSC) showed that as the hard segment (HS) size increased, the melting and glass transition temperature and the change of heat capacity at glass transition of ethyl capped MDHSs increased. Model thermoplastic polyurethanes (TPUs) were synthesized using the reaction of bischloroformate of poly (tetramethylene oxide) (PTMO) diol or polyisobutylene (PIB) diol with amine‐terminated MDHSs. X‐ray diffraction results indicated the amorphous structure of model TPUs. DSC revealed HS related endotherms, regardless of SS, which were attributed to the local ordering of the HSs. Additional endotherms in PTMO based model TPUs might arise from the dissociation of hydrogen bonding between PTMO and HSs. The lower Tg in model TPUs compared to the polydisperse analogues observed by dynamic mechanical analysis (DMA) indicated higher microphase separation of monodisperse HSs. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3171–3181  相似文献   
83.
通过添加聚乙烯醇和丙酮,找到了一种无皂乳液聚合制备高浓度单分散苯乙烯-甲基丙烯酸甲酯共聚胶体粒子的新途径,粒子半径达纳米数量级,体系的固含量大于50%,研究了聚乙烯醇和丙酮对反应过程,胶乳粒子大小的影响,结果表明聚乙烯醇和丙酮对高浓度无皂纳米胶乳粒子的形成与稳定起重要作用。  相似文献   
84.
The dispersion copolymerization of styrene and butyl methacrylate in ethanol-water medium to afford micrometer-size monodisperse beads has been investigated. Hydroxypropyl cel-lulose, poly (acrylic acid), and poly (vinylpyrrolidone) have been used as steric stabilizers, benzoyl peroxide and azobisisobutyronitrile as initiators. A novel steric stabilizing system consisting of a mixture of poly (acrylic acid) and hydroxypropyl cellulose has also been shown to lead to monodisperse beads for which the surface charge can be controlled by the relative ratio of steric stabilizers. The effect of several variables, such as the solvency of the medium, the concentration of co-monomers, the reaction temperature, and the type of steric stabilizer and initiator used on the bead size and size distribution are discussed. © 1995 John Wiley & Sons, Inc.  相似文献   
85.
Frequency domain photon migration (FDPM) technique was employed to investigate the structure factors of dense, polydisperse colloidal suspensions. The angle-integrated structure factors, [S(q)], extracted from FDPM measurements of scattering properties at volume fractions ranging from 0.05 to 0.4, were compared with the values predicted from the polydisperse hard sphere Percus-Yevick (HSPY) model, as well as decoupling approximation (DA) and local monodisperse approximation (LMA) models that incorporated independently measured particle size information. Results show that the polydisperse HSPY model is the most suitable for accounting for particle interactions which predominantly arise from volume exclusion effects. Furthermore, the influence of size polydispersity upon [S(q)] is most significant at high volume fractions. The static structure factors at small wave vector q, S(0), were also assessed from dual wavelength FDPM measurements by using the small wave number approximation as well as the local monodisperse approximation. The measured S(0) agrees well with the values predicted by the polydisperse HSPY model.  相似文献   
86.
Monodisperse colloidal silica spheres were prepared from tetraethylorthosilicate in mixtures of water, ammonia and ethanol. The surfaces of the spheres were successfully modified by chemical reaction with silane coupling agents. Several qualitative and quantitative methods were employed to analyse the organic surface modifications. As a result, the surface coverage of silica spheres with silane coupling agents could be calculated using different characterization methods.  相似文献   
87.
Abstarct  Poly(phenylquinoline)-block-poly(ethylene glycol)(PPQ-b-PEG) rod-coil block copolymers possess the self-assembly behavior in selective solvents. The copolymers in the mixed solvents ofV(trifluoroacetic acid, TFA):V(dichloromethane, DCM) = 1:1 can self-assemble into polymer hollow microspheres with diameters of a few micrometers. The polymer hollow microspheres are monodisperse, and the diameters of them increase with an increased polymerization degree of the PPQ rigid-rod block. The solution concentration has no effect on the microsphere diameter, but spherical surface shows burrs when the solution concentration is too low. It has been found that the obtained dilute solution has the strongest absorption peak at 376 nm and strongest emission peak at 604 nm by the spectroscopy analysis.  相似文献   
88.
Utilizing a new type of monomer swelling method, 6.1 m-size monodisperse polymer particles were prepared by seeded polymerization. 1.8 m-size monodisperse polystyrene (PS) seed particles (1.8 m in size) were prepared by dispersion polymerization in ethanol-water (80/20, v/v) medium in the presence of poly(acrylic acid) as stabilizer with 2,2-azobisisobutyronitrile as initiator. The PS seed dispersion was mixed with ethanol-water (60/40, v/v) solution dissolving styrene (S) monomer, benzoyl peroxide as initiator, and poly(vinyl alcohol) as stabilizer. By slow, continuous, dropwise addition of water with a micro feeder into the mixture, the PS particles absorbed the many S monomers, which were separated from the medium and swelled from 1.8 m to 8.4 m while keeping the monodispersity high. We named this procedure the dynamic swelling method. Then, the seeded polymerization of the absorbed S monomer was carried out in the presence of NaNO2 as water-solube inhibitor.Part CXXII of the series Studies on Suspension and Emulsion.  相似文献   
89.
Monodisperse porous polymer particles in the size range of 10 μm in diameter were prepared via seeded emulsion polymerization. Linear polymer (polystyrene seed) or a mixture of linear polymer and solvent or nonsolvent were used as inert diluents. The pore diameters of these porous polymer particles were on the order of 1000 Å with pore volumes up to 0.9 mL/g and specific surface areas up to 200 m2/g. The physical features of the porous polymer particles depended on the diluent type and the crosslinker content, as well as the molecular weight of polymer seed particles. By varying the molecular weight of the linear polymer, monodisperse porous polymer particles with different pore size distribution could be synthesized. Polymer seed with a low degree of crosslinking instead of linear polymer could also be used to prepare monodisperse porous polymer particles with smaller pore volume and pore size.  相似文献   
90.
The effect of concentration of divinylbenzene on pore size distribution and surface areas of micropores, mesopores, and macropores in uniformly sized porous poly(styrene-co-divinylbenzene) beads prepared in the presence of linear polystyrene as a component of the porogenic mixture has been studied. While the total specific surface area was clearly determined by the content of divinylbenzene, the sum of pore volumes for mesopores and macropores as well as their size distribution does not change within a broad range of DVB concentrations. Consequently, the size exclusion chromatography calibration curves are almost identical for all the beads prepared with different percentages of crosslinking monomer. However, the more crosslinked beads have better mechanical and hydrodynamic properties. © 1994 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号