首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   7篇
  国内免费   10篇
化学   86篇
晶体学   1篇
力学   2篇
数学   1篇
物理学   7篇
  2023年   4篇
  2022年   2篇
  2021年   5篇
  2020年   7篇
  2019年   6篇
  2018年   4篇
  2017年   6篇
  2016年   3篇
  2015年   8篇
  2014年   1篇
  2013年   7篇
  2012年   4篇
  2011年   1篇
  2010年   4篇
  2009年   5篇
  2008年   1篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1988年   1篇
  1971年   1篇
排序方式: 共有97条查询结果,搜索用时 15 毫秒
41.
We have prepared an amphiphilic oxazoline block copolymer of hydrophilic poly(2-methyl-2-oxazoline) and hydrophobic poly[2-(2-perfluorooctyl)ethyl-2-oxazoline] chains. By controlling the length and composition of polymer chains, we found that this fluorinated block copolymer can be readily dissolved in water. Furthermore, we can achieve a stable surface coating of the fluorinated block copolymer by dissolving the copolymer in water, then coating the aqueous copolymer solution onto surfaces of nonwater-soluble polymers. This is a simple and useful method of modifying the surface character of polymer substrates. We have found that the polyether urethane (PEU) coated by block copolymer has a different surface chemistry and biological reactivity than the uncoated PEU. From XPS analysis, we found the fluorinated copolymer was coated on PEU (atomic % of F: 31.3 on coated PEU, 0.3 on uncoated). The two surfaces have different affinities for biological molecules. Specifically, the fibrinogen adsorption on the fluorinated copolymer-coated PEU was 62 ± 39 ng/cm2, compared to a value of 156 ± 99 ng/cm2 for uncoated PEU. In an ex vivo evaluation of platelet adhesion, the surface of coated PEU attached a few white cells while uncoated PEU was covered with activated platelets. © 1994 John Wiley & Sons, Inc.  相似文献   
42.
43.
Modification of clay with biopolymers has been of high interest in recent years. These new materials may be used for drug delivery systems and as biomaterials due to their high biocompatible properties and because they have the advantage of being biodegradable. The modification of montmorillonite (MMT) with chitosan was done in solution, at ratio 1:2 and at room temperature, or at stages of high temperature, and subjected to a microwave treatment. The influence of pH was observed upon the intercalation process.The obtained materials were characterized through X‐ray diffraction (XRD), thermogravimetrical analyses (TGA), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Using such a mixed treatment, the basal distance of modified MMT increased up to 3.6 nm. The results show the intercalation of chitosan between the layers of MMT and obtaining of intercalated and partial exfoliated nanocomposites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
44.
Fracture phenomena at the debond tip of partially bonded bimaterial half-planes subjected to concentrated normal forces, couples, and uniform tension are considered. The crack initiation conditions are described by the stress distribution before the initiation and the energy release rate of the crack immediately after the initiation. The debond development conditions are described by the stress distribution and the energy release rate of the debond before its initiation. When both the crack and the debond have chances to occur, or when cracks can arise in both the materials, the fracture phenomena are predicted by comparing the ratio of energy release rates and the ratio of fracture toughnesses.  相似文献   
45.
Bacterial cellulose (BC) is a natural material produced by Acetobacter xylinum, widely used in wound dressings due to the high water‐holding capacity and great mechanical strength. In this paper, a novel antimicrobial dressing made from BC/methylglyoxal (MGO) composite with a dip‐coating method inspired by naturally antimicrobial Manuka honey is proposed, which to our best knowledge, has not yet to be reported. Characterizations by scanning electron microscope and atomic force microscopy show the interconnected nanostructure of BC and MGO and increase surface roughness of the BC/MGO composite. Thermal analysis indicates high temperature stability of both BC and BC/MGO, while compared with BC, BC/MGO exhibits slightly weaker thermal stability possibly due to reduction of hydrogen bonding and increase of crystallinity. Mechanical test confirms the strong mechanical property of BC and BC/MGO nanocomposite. From the disk diffusion antimicrobial test, the BC/MGO nanocomposite with highest MGO concentration (4%) shows great zone inhibition diameter (around 14.3, 12.3, 17.1, and 15.5 mm against Micrococcus luteus, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli). Compared with other antimicrobial wound dressing composite materials, the proposed BC/MGO nanocomposite has among the greatest antimicrobial property against broad‐spectrum bacteria, making it a promising antimicrobial dressing in chronic wounds care.  相似文献   
46.
The ring-opening polymerization kinetics of 5-[2-(2-methoxyethoxy)-ethoxymethyl]-5-methyl-1,3-dioxa-2-one (TMOE-2) and 5-[2-{2-(2-methoxyethoxy)ethyoxy}-ethoxymethyl]-5-methyl-1,3-dioxa-2-one (TMOE-3) was investigated using different catalysts with the aim to improve control over molecular weight. The possibility of monomer impurities driving the variability in molecular weight that has been seen in different reports, was assessed and evidence of catalysis via an imidazole impurity was found. The catalysts 1,5,7-triazobicyclo(4.4.0)dec-5-ene (TBD), hydrogen chloride in diethyl ether (HCl·Et2O), stannous 2-ethylhexanoate (SnOct2), and catalyst free thermal polymerizations were conducted to understand the mechanisms influencing the molecular weight. TBD and HCl·Et2O consistently achieved high conversion of the monomer; however, molecular weights greater than 7,000 Da could not be achieved due to competing side reactions. SnOct2 catalyzed and catalyst free thermal polymerizations were highly influenced by monomer purity and achieved lower conversion than TBD and HCl·Et2O. Understanding these mechanisms will guide future synthesis of poly(TMOE-2) and poly(TMOE-3) for biomedical applications.  相似文献   
47.
《先进技术聚合物》2018,29(4):1227-1233
The present study examined poly(2‐hydroxyethyl methacrylate) (PHEMA)‐based hydrogels that have been extensively used in biomedical applications, including contact lens. In this research, we aimed to reduce adsorption of protein components from tears and bacterial deposition by surface modification of the hydrogel with different functional groups that included carboxylic acid, primary amine, and quaternary ammonium. The PHEMA was treated with a solution of sulfuric acid for partial hydrolysis of the HEMA ester groups to induce acid groups on the surface of the hydrogel. Carboxylic acid groups of the modified PHEMA were converted to primary amine and quaternary ammonium groups via carbodiimide chemistry. The surface physical and chemical properties of different samples were investigated by atomic force microscopy and X‐ray photoelectron spectroscopy, respectively. We conducted the bicinchoninic acid assay to evaluate protein deposition from artificial tear fluid on samples. Antibacterial properties of the modified hydrogels were investigated with a culture of Staphylococcus aureus, one of the major causes of eye infections. Our data showed that positively charged amine and ammonium groups efficiently resisted protein adsorption and bacterial deposition compared to alcohol and carboxylic acid groups.  相似文献   
48.
利用形成碳-氧键将磷铵两性离子(1)共价键合到聚苯乙烯(PS)材料表面, 改善其抗凝血性能. 首先对PS进行氯甲基化反应, 生成苄氯结构, 然后通过自合成化合物1中的-OH与氯甲基化聚苯乙烯的-CH2Cl反应形成醚键, 将两性离子接枝在PS上. 表征了产物结构, 并通过水接触角和血小板黏附实验对结构修饰前后材料的亲水性和抗凝血性能进行了比较. 结果表明, 磷铵两性离子结构修饰的聚苯乙烯材料可以有效地提高其血液相容性.  相似文献   
49.
Progress in prostate cancer research is presently limited by a shortage of reliable in vitro model systems. The authors describe a novel self‐assembling peptide, bQ13, which forms nanofibers and gels useful for the 3D culture of prostate cancer spheroids, with improved cytocompatibility compared to related fibrillizing peptides. The mechanical properties of bQ13 gels can be controlled by adjusting peptide concentration, with storage moduli ranging between 1 and 10 kPa. bQ13's ability to remain soluble at mildly basic pH considerably improved the viability of encapsulated cells compared to other self‐assembling nanofiber‐forming peptides. LNCaP cells formed spheroids in bQ13 gels with similar morphologies and sizes to those formed in Matrigel or RADA16‐I. Moreover, prostate‐specific antigen (PSA) is produced by LNCaP cells in all matrices, and PSA production is more responsive to enzalutamide treatment in bQ13 gels than in other fibrillized peptide gels. bQ13 represents an attractive platform for further tailoring within 3D cell culture systems.  相似文献   
50.
This describes the cross-linking/co-polymerization reaction of chitosan (CS), acrylic acid (AAc), and N, N′-methylenebisacrylamide (MBA) in the presence of citrate-covered-γ-Fe2O3 nanoparticules. A gelling process was verified by means of spectroscopic methods; Fourier transform infrared (FT-IR) and solid-state 13C-CP/MAS nuclear magnetic resonance (NMR). The corresponding signals of the gelling process, in the 13C NMR spectra, for the magnetic hydrogel were shifted to lower values due to embedding of the citrate-covered-γ-Fe2O3 nanoparticules. The X-ray diffraction (XRD) confirmed that the crystallinity of the magnetic hydrogel exhibited a different crystalline structure to that without magnetic properties. The Mössbauer and magnetization analysis revealed that the magnetic hydrogel displays a high lattice strain, due to bonded iron atom covalence and superparamagnetism. From scanning electronic microscope (SEM) micrographs, no separation phase coexists between the magnetic nanoparticules and cross-linked hydrogel, indicating an excellent dispersion throughout the hydrogel. The swelling rate was dependent on the cross-linking degree of the hydrogel and ionic strength of the aqueous solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号