首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   1篇
化学   12篇
晶体学   2篇
物理学   6篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2009年   2篇
  2008年   1篇
  2006年   3篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
排序方式: 共有20条查询结果,搜索用时 31 毫秒
11.
Electroless deposited Ni-P and Co-P coatings, modified by introducing additional elements such as Zn and W are presented. The characteristics alterations of the multicomponent films are reviewed in connection with the particularities of co-deposition of the third metal. Based on the fair correspondence between TEM, microdiffraction and precise XRD analysis it is shown that the structure type and lattice parameters of polycrystalline Ni-Me-P and Co-Me-P films are practically identical to pure Ni and Co metals. No impurity phase is detected by XRD. The location of the third element is determined using TEM with EDS. The conclusion is drawn about the grain boundary segregation of Zn and W along with P. Earlier studies by XPS and AES showed that Zn is partially oxidized, whereas W is in elemental form inside the coatings. Crystallites built of lamellas with thickness within the nanometer scale are observed in Ni-W-P and Co-W-P by TEM. Published in Russian in Elektrokhimiya, 2008, Vol. 44, No. 6, pp. 764–770. The text was submitted by the authors in English.  相似文献   
12.
α-MnO2 nanowires or nanorods have been selectively synthesized via the hydrothermal method in nitric acid condition. The α-MnO2 nanowires hold with average diameter of 50 nm and lengths ranging between 10 and 40 μm, using MnSO4·H2O as manganese source; meanwhile, α-MnO2 bifurcate nanorods with average diameter of 100 nm were obtained by adopting MnCO3 as starting material. The morphology of α-MnO2 bifurcate nanorods is the first one to be reported in this paper. X-ray powder diffraction (XRD), field scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM) were used to characterize the products. Experimental results indicate that the concentrated nitric acid plays a crucial role in the phase purity and morphologies of the products. The possible formation mechanism of α-MnO2 nanowires and nanorods has been discussed.  相似文献   
13.
Fe-C纳米微粒的透射电镜观察与选区电子衍射分析   总被引:12,自引:1,他引:11  
利用透射电镜观察和选区电子衍射分析研究了在18kPa的Ar气氛中通过交流电弧法制备的Fe -C纳米微粒。结果表明微粒主要为两种类型 :一类是FeC合金微粒 ,另一类是具有氧化层结构的Fe微粒 ,不同粒径的微粒类呈现不同聚集特性。  相似文献   
14.
Electrospun poly(vinylidene fluoride) (PVDF) nanofibers were collected on aluminum foil across a gap with widths that varied in size from 2 to 10 mm. Scanning electron microscopy (SEM) images on fiber bundles showed that in all cases, fibers in the gap were macroscopically aligned across the gap. However, single fiber selected area electron diffraction (SAED) patterns and polarized Fourier Transform Infrared (FTIR) spectra demonstrated that fibers deposited across the gap were also highly aligned at the molecular level with the polymer backbones oriented along the fiber axis and that the extent of molecular orientation increased with the gap width. A possible explanation for this observation is based on the repulsion of similarly charged nanofibers and the simultaneous attraction of these fibers to the oppositely charged gap edges. This provides a plausible model for understanding the deposition kinetics and subsequent molecular orientation as a function of gap size when electrospinning using this method of fiber collection. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 617–623  相似文献   
15.
In this work, advanced nanoscale surface characterization of CuO Nanoflowers synthesized by controlled hydrothermal approach for significant enhancement of catalytic properties has been investigated. The CuO nanoflower samples were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, high-resolution transmission electron microscopy (HR-TEM), selected-area electron diffraction (SAED), high-angular annular dark field scanning transmission electron microscopy (HAADF-STEM) with elemental mapping, energy dispersive spectroscopy (STEM-EDS) and UV–Vis spectroscopy techniques. The nanoscale analysis of the surface study of monodispersed individual CuO nanoflower confirmed the fine crystalline shaped morphology composed of ultrathin leaves, monoclinic structure and purified phase. The result of HR-TEM shows that the length of one ultrathin leaf of copper oxide nanoflower is about ~650–700 nm, base is about ~300.77 ± 30 nm and the average thickness of the tip of individual ultrathin leaf of copper oxide nanoflower is about ~10 ± 2 nm. Enhanced absorption of visible light ~850 nm and larger value of band gap energy (1.68 eV) have further supported that the as-grown material (CuO nanoflowers) is an active and well-designed surface morphology at the nanoscale level. Furthermore, significant enhancement of catalytic properties of copper oxide nanoflowers in the presence of H2O2 for the degradation of methylene blue (MB) with efficiency ~96.7% after 170 min was obtained. The results showed that the superb catalytic performance of well-fabricated CuO nanoflowers can open a new way for substantial applications of dye removal from wastewater and environment fields.  相似文献   
16.
Poly-methylmethacrylate/Mg–Al layered double hydroxide (PMMA/LDH) based nanocomposites have successfully been synthesised with varying LDH content by in situ polymerisation technique and systematically studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT IR), UV-Visible spectroscopy and microscopic (FE SEM and HR TEM) analysis. In particular, thermogravimetric analysis (TGA) and gas barrier properties measurement were carried out to assess the suitable application of these materials. The thermal property of PMMA/LDH composites was compared with neat PMMA and an enhancement in thermal stability was noticed with gradual increase in LDH content in the composite. Gas permeability measurement data showed significant decrease in oxygen permeability value of the PMMA/LDH nanocomposites in comparison to the pristine PMMA. Enhancement in thermal stability along with significant reduction in oxygen permeability of PMMA upon composite formation indicate the possible application of these materials in packaging industries.  相似文献   
17.
Polyacrylonitrile-based Zn–Al layered double hydroxide composites (PAN/LDH) have been synthesised with different LDH content by in situ polymerisation technique. The nanocomposites were systematically studied by Fourier transform infrared spectroscopy, X-ray diffraction (XRD), thermo gravimetric analysis (TGA), field emission scanning electron microscope (FE SEM), high resolution transmission electron microscopy (HRTEM), energy dispersive spectroscopy (EDS) and antibacterial activity measurement. The successful formation of exfoliated nanocomposite was inferred from the XRD patterns and HRTEM images. The thermal decomposition of PAN was enhanced upon nanocomposite (PAN/LDH) formation. The antimicrobial activity of PAN/LDH nanocomposites is evaluated for antibacterial activity against some clinically important bacterial pathogens and the bacterial growth is monitored at different percentage of LDH. The PAN/LDH composites displayed considerable antibacterial activity, on the contrary the virgin PAN did not possess any antibacterial activity. The likely electrostatic interaction among LDH layers with charged surface of bacterial cell is assumed to be responsible for antimicrobial activity. The prepared nanocomposite has appreciable thermal stability in combination with antibacterial activities by which the material is suitable for packaging and fabrication in textile application.  相似文献   
18.
Abstract

Lecithin liposomes were studied by transmission electron microscopy (TEM), selected‐area electron diffraction (SAED), IR, and GC‐MS. Results indicate that titanium dioxide (TiO2) nanoparticles can gain access into lecithin liposomes during sonication and the lecithin liposomes can be effectively decomposed upon illumination with near‐UV light.  相似文献   
19.
Adsorption technology is widely considered as the most promising and robust method of purifying water at low cost and with high-efficiency. Carbon-based materials have been extensively explored for adsorption applications because of their good chemical stability, structural diversity, low density, and suitability for large scale production. Graphene – a single atomic layer of graphite – is the newest member in the family of carbon allotropes and has emerged as the “celeb” material of the 21st century. Since its discovery in 2004 by Novoselov, Geim and co-workers, graphene has attracted increased attention in a wide range of applications due to its unprecedented electrical, mechanical, thermal, optical and transport properties. Graphene's infinitely high surface-to-volume ratio has resulted in a large number of investigations to study its application as a potential adsorbent for water purification. More recently, other graphene related materials such as graphene oxide, reduced graphene oxide, and few-layered graphene oxide sheets, as well as nanocomposites of graphene materials have also emerged as a promising group of adsorbent for the removal of various environmental pollutants from waste effluents. In this review article, we present a synthesis of the current knowledge available on this broad and versatile family of graphene nanomaterials for removal of dyes, potentially toxic elements, phenolic compounds and other organic chemicals from aquatic systems. The challenges involved in the development of these novel nanoadsorbents for decontamination of wastewaters have also been examined to help identify future directions for this emerging field to continue to grow.  相似文献   
20.
Cermets are wear resistant materials used in cutting tool applications. The materials are composed of hard phase grains surrounded by a tough binder phase. The mechanical properties are influenced by both phases and grain boundaries. In this work, the detailed microstructure of the Ni binder phase in a TiC–Mo2C–Ni cermet has been studied using a combination of transmission electron microscopy techniques. A complex contrast was observed in the Ni binder when imaged in the transmission electron microscope. It was found to arise from a combination of dislocations and nanometer sized particles that were present in the Ni matrix. From electron diffraction the particles were identified as intermetallic Ni3Ti (P63/mmc). This result was consistent with energy-dispersive microanalysis and thermodynamics. The orientation relationship between the hexagonal Ni3Ti particles and the cubic Ni matrix was given by (0001)Ni3Ti//(111)Ni and Ni3Ti// Ni.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号