首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   878篇
  免费   60篇
  国内免费   17篇
化学   895篇
晶体学   5篇
力学   3篇
综合类   8篇
数学   1篇
物理学   43篇
  2023年   14篇
  2022年   20篇
  2021年   36篇
  2020年   41篇
  2019年   46篇
  2018年   37篇
  2017年   35篇
  2016年   27篇
  2015年   44篇
  2014年   27篇
  2013年   66篇
  2012年   94篇
  2011年   39篇
  2010年   39篇
  2009年   39篇
  2008年   36篇
  2007年   41篇
  2006年   29篇
  2005年   37篇
  2004年   28篇
  2003年   23篇
  2002年   14篇
  2001年   14篇
  2000年   14篇
  1999年   8篇
  1998年   12篇
  1997年   20篇
  1996年   10篇
  1995年   13篇
  1994年   9篇
  1993年   6篇
  1992年   4篇
  1991年   3篇
  1990年   5篇
  1989年   1篇
  1988年   5篇
  1987年   5篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
排序方式: 共有955条查询结果,搜索用时 156 毫秒
21.
Arsenic Speciation in Urine and Blood Reference Materials   总被引:1,自引:0,他引:1  
Acute and chronic exposure to arsenic is a growing problem in the industrialized world. Arsenic is a potent carcinogen and toxin in humans. In the body, arsenic is metabolized to produce several species, including inorganic forms, such as trivalent (AsIII) and pentavalent (AsV), and the methylated metabolites such as monomethylarsonic acid, (MMAV), and dimethylarsinic acid (DMAV), in addition to arsenobetaine (AsB) which is ingested and excreted from the body in the same form. Each of these species has been reported to possess a specific but different degree of toxicity. Thus, not only is the measurement of total As required, but also quantification of the individual metabolites is necessary to evaluate the toxicity and risk assessment of this element. There are a large number of reference materials that are used to validate methodology for the analysis of As in blood and urine, but they are limited to total As concentrations. In this study, the speciation of five arsenic metabolites is reported in blood and urine from commercial available control materials certified for total arsenic levels. The separation was performed with an anion exchange column using inductively coupled plasma mass spectrometry as a detector. Baseline separation was achieved for AsIII, AsV, MMAV, DMAV, and AsB, allowing us to quantify all five species. Excellent agreement between the total arsenic levels and the sum of the speciated As levels was obtained.  相似文献   
22.
Song  Zhenghua  Zhang  Ni  Wang  Lin 《Mikrochimica acta》2003,142(4):205-211
A unique flow injection chemiluminescence (CL) method for the determination of calcium dobesilate in pharmaceutical preparations and human urine is presented in this paper. The analytical reagents involved in the CL reaction, luminol and ferricyanide, were both immobilized on an anion-exchange column in an FI system. The CL signal produced by the reaction of luminol with ferricyanide (the reagents had been eluted from the column through sodium phosphate injection) decreased in the presence of dobesilate. The decreased CL intensity was linear to the dobesilate concentration in the range 0.2100.0ngmL–1. At a flow rate of 2.0mLmin–1, one analytical cycle can be completed in 1.5min, including sampling and washing, resulting in a throughput of 40 cycles per hour. The proposed method was applied successfully to the determination of dobesilate in pharmaceutical preparations and human urine without any pre-treatment. It was found that, after oral administration, the dobesilate concentration reached its maximum after three hours, and the dobesilate metabolism ratio in 24 hours was 57.1% in the bodies of volunteers.Received September 14, 2002; accepted March 11, 2003 Published online July 16, 2003  相似文献   
23.
Summary Clenbuterol has been determined in urine by solidphase extraction on a C18 cartridge, diazotization of the eluate with nitrite, coupling of the diazonium ion with 1-(naphthyl)ethylenediamine, and separation of the azo dye formed by HPLC with a C18 column and a micellar mobile phase containing 0.1 M sodium dodecyl sulphate, 12%n-butanol and 0.05 M citrate buffer, pH 3. Recoveries higher than 90% were obtained by mixing the samples with a 20% 0.2 M NaOH before extraction. Limits of detection of 51 and 6.7 ng L−1 were obtained with spectrophotometric and thermal lens spectrometric detection, respectively; respective repeatabilities were 3.1% (5 μg mL−1) and 5.6% (0.16 μg mL−1).  相似文献   
24.
The method used at LGC for analysis of “total” 19-norandrosterone (19-norandrosterone glucuronide plus “free” 19-norandrosterone) in urine for the Comité Consultatif pour la Quantité de Matière Pilot Study (CCQM-P68) is described. The analytical method used was a modified version of the method developed at the National Measurement Institute of Australia, which used a hydrolysis and derivatisation procedure first described by the German Sports University. This method is routinely used by World Anti-Doping Agency-accredited laboratories for sports drug testing. The main modifications made to the method were the use of 19-norandrosterone glucuronide as a calibration standard and 19-norandrosterone glucuronide-d4 as an isotopically labelled internal standard, and the use of a bench-top quadrupole gas chromatograph–mass spectrometer. The results produced by LGC (2.14 ± 0.15 ng g−1 expanded uncertainty, coverage factor k = 2) were in excellent agreement with those from other participating national metrology institutes and thus further validates the exact-matching isotope-dilution mass spectrometric procedures used at LGC for a wide range of reference measurement applications, including measurement of ng g−1 levels of steroids in a biological matrix.  相似文献   
25.
A new, accurate, sensitive and fast reversed-phase high-performance liquid chromatography (RP-HPLC) as an analytical method for the quantitative determination of 11 drugs in human urine was worked out, optimized and validated. The objects of analysis were imipenem (IMP), paracetamol (PAR), dipyrone (DPR), vancomycin (VCM), amikacin (AMK), fluconazole (FZ), cefazolin (CFZ), prednisolone (PRE), dexamethasone (DEX), furosemide (FUR) and ketoprofen (KET) belonging to four different groups (antibiotics, analgesic, demulcent and diuretic). For HPLC analysis, diode array (DAD) and fluorescence (FL) detectors were used. The separation of analyzed compounds was conducted by means of a LiChroCART® Purospher® C18e (125 mm × 3 mm, particle size 5 μm) analytical column with LiChroCART® LiChrospher® C18 (4 mm × 4 mm, particle size 5 μm) pre-column with gradient elution. Analyzed drugs were determined within 20 min. The mobile phase was comprised of various proportions of methanol, acetonitrile and 0.05% trifluoroacetic acid in water. AMK was separated and determined from human urine using ortho-phthaldialdehyde-3-mercaptopropionic acid (OPA-3-MPA) as a fluorescent reagent by RP-HPLC-FL. The following retention times for drugs IMP, PAR, DPR, VCM, AMK, FZ, CFZ, PRE, DEX, FUR and KET in human urine were found: 4.01 min, 4.86 min, 6.71 min, 8.14 min, 9.46 min, 10.01 min, 10.90 min, 13.34 min, 14.06 min, 16.03 min and 18.98 min, respectively. Excellent linearity was obtained for compounds in the range of concentration: 0.35-42 μg ml−1, 0.5-45 μg ml−1, 4.5-38 μg ml−1, 0.25-25 μg ml−1, 0.5-35 μg ml−1, 0.25-22 μg ml−1, 0.03-52 μg ml−1, 0.15-25 μg ml−1, 0.25-28 μg ml−1, 0.05-18 μg ml−1 and 0.15-35 μg ml−1 for IMP, PAR, DPR, VCM, AMK, FZ, CFZ, PRE, DEX, FUR and KET, respectively. The limits of detection (LOD) and limits of quantification (LOQ) for analyzed drugs were calculated in all cases and recovery studies were also performed. Ten human urine samples obtained from patients treated in hospital have been tested. In analyzed samples, one or more drugs from the 11 examined drugs were detected. The concentrations of examined drugs in urine samples ranged between: 1.5-12 μg ml−1 of PAR, 5.2-11.5 μg ml−1 of DPR, 0.13-9.5 μg ml−1 of CFZ and 0.1-8 μg ml−1 of FUR. This method can be successfully applied to routine determination of all these drugs in human urine samples.  相似文献   
26.
Summary Capillary zone electrophoresis (CZE) has been used for direct determination of 6-thioguanine, methotrexate, and 5-fluorouracil in human urine, by use of a fused-silica capillary (60.2 cm×75 μm i.d.). Separation was performed after hydrodynamic injection for 7 s; the separation potential and capillary temperature were 25 kV and 35°C, respectively. A 45mm borate buffer solution (pH 9.2) was used as separation electrolyte. Under these conditions the analysis takes approximately 10 min and interday precision of migration times and corrected peak areas is satisfactory. A linear response over the concentration range 3.0–20.0 mg L1 was observed for the three chemotherapeutic drugs in diluted human urine. Detection limits (s/n=3) for 6-thioguanine and methotrexate were approximately 1.60 mg L1 in diluted human urine; that for fluorouracil was 2.60 mg L1. A 2-ml volume of human urine was diluted with 2-mL of water and introduced directly into the electrophoresis system. CZE was shown to be a good method with regard to simplicity, satisfactory precision, and sensitivity. This method resulted in especially excellent recoveries for determination of methotrexate in all the different urine samples analysed (n=10).  相似文献   
27.
A highly sensitive, selective and simple method is described for the determination of histamine by high-performance liquid chromatography (HPLC) with fluorescence detection. The method is based on an intramolecular excimer-forming fluorescence derivatization of histamine with 4-(1-pyrene)butyric acid N-hydroxysuccinimide ester (PSE), followed by reversed-phase HPLC. Histamine, having two amino moieties in a molecule, was converted to the dipyrene-labeled derivative by reaction with PSE. The derivative afforded intramolecular excimer fluorescence (450-540 nm), which can clearly be discriminated from the monomer fluorescence (370-420 nm) emitted from PSE. Typically, a 10 micro L sample solution was mixed with 100 micro L of derivatization reagent solution, which was a mixture of 0.5 mm PSE in acetonitrile and 0.5 mm potassium carbonate in water (8:2, v/v). The derivatization was carried out at 100 degrees C for 90 min. The PSE derivative of histamine could be separated by reversed-phase ODS column with isocratic elution using acetonitrile:water (82:18, v/v) containing 0.03% triethylamine. The detection limit (singnal-to-noise ratio = 3) of histamine was 0.5 fmol for a 30 micro L injection. The method was successfully applied to the determination of histamine in human urine, and had enough selectivity and sensitivity for urinary histamine quantification.  相似文献   
28.
A sensitive chemiluminescence method, based on the enhancive effect of norfloxacin on the reaction between luminol and dissolved oxygen in a flow injection system, was proposed for the determination of norfloxacin. The increment of the chemiluminiscence intensity was proportional to the concentration of norfloxacin, giving a calibration graph linear over the concentration from 0.4 ng mL−1 to 400.0 ng mL−1 (r 2 = 0.9988) with the detection limit of 0.1 ng mL−1 (3 × σ noise). At the flow rate of 2.0 mL min−1, a complete determination of norfloxacin, including sampling and washing, could be accomplished in 30 s with the relative standard deviation lower than 3.0 %. The proposed method was applied successfully to determine norfloxacin in pharmaceuticals, human urine, and serum. Possible mechanism of the reaction was also discussed.  相似文献   
29.
An optimized HPLC method for the quantification of metoclopramide (MCP) in human plasma and urine is described. MCP and internal standard are extracted from alkalinized substrate into diethyl ether and back-extracted into dilute acid. The analytes are separated with a ternary mobile phase at cyanopropyl-silica and detected at 312 nm (UV detection). The lower limit of quantification is 0.5 ng/ml in plasma and 50 ng/ml in urine. Optimization of extraction, chromatography, and detection is discussed. The method is selective to numerous common drug substances with excellent accuracy and precision data. After validation, the method is applied to the samples of a pharmacokinetic study. Pharmacokinetic parameters indicate the need for a sophisticated method as tool for optimization of metoclopramide formulations.  相似文献   
30.
Summary An analytical method for the simultaneous determination of the pyrethroid metabolites cis and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid, cis 3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane carboxylic acid, 3-phenoxybenzoic acid and 4-fluoro-3-phenoxybenzoic acid in human urine samples is described. The urine is subjected to acid-induced hydrolysis followed by exhaustive solvent extraction, covering both conjugated and free acids, followed by a common derivatisation step yielding the corresponding methyl esters. Quantitation was by diastereomeric, capillary gas chromatography-mass spectrometry. It appears that 4-fluoro-3-phenoxybenzoic acid is a characteristic urinary marker for cyfluthrin exposure. The limits of determination are 0.5–1.0 g L–1 urine depending on the metabolites concerned. The applicability of the method was tested on urine samples from pest control operators exposed occupationally to cypermethrin and cyfluthrin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号