首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   538篇
  免费   24篇
  国内免费   18篇
化学   567篇
力学   3篇
数学   1篇
物理学   9篇
  2022年   3篇
  2021年   5篇
  2020年   5篇
  2019年   5篇
  2018年   15篇
  2017年   11篇
  2016年   13篇
  2015年   17篇
  2014年   10篇
  2013年   27篇
  2012年   11篇
  2011年   20篇
  2010年   21篇
  2009年   26篇
  2008年   25篇
  2007年   35篇
  2006年   33篇
  2005年   33篇
  2004年   44篇
  2003年   31篇
  2002年   28篇
  2001年   20篇
  2000年   16篇
  1999年   18篇
  1998年   12篇
  1997年   12篇
  1996年   7篇
  1995年   16篇
  1994年   17篇
  1993年   24篇
  1992年   14篇
  1991年   4篇
  1987年   1篇
  1985年   1篇
排序方式: 共有580条查询结果,搜索用时 20 毫秒
61.
A new negative‐working and alkaline‐developable photosensitive polyimide precursor based on poly(amic acid) (PAA), 4,4′‐methylenebis[2,6‐bis(hydroxymethyl)]phenol (MBHP) as a crosslinker, and a photoacid generator (5‐propylsulfonyloxyimino‐5H‐thiophen‐2‐ylidene)‐2‐(methylphenyl)acetonitrile (PTMA) has been developed. PAA was prepared by ring‐opening polymerization of pyromellitic dianhydride with 4,4′‐oxydianiline. The photosensitive polyimide precursor containing PAA (65 wt %), MBHP (25 wt %), and PTMA (10 wt %) showed a clear negative image featuring 10 μm line and space patterns when it was exposed to 436 nm light at 100 mJ·cm?2, post‐exposure baked at 130 °C for 3 min, followed by developing with a 2.38 wt % aqueous tetramethylammonium hydroxide solution at 25 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 593–599, 2005  相似文献   
62.
This research was focused on the design and execution of new synthetic routes to low‐temperature‐curable poly(silarylene–siloxane)polyimides. The synthesis of individual oligoimide and silarylene–siloxane blocks was followed by hydrosilylation polymerization to produce crosslinked copolymers. The silarylene–siloxane and polyimide blocks were structurally characterized by IR and 1H NMR spectroscopy and size exclusion chromatography. The high‐temperature resistance of the copolymers was evaluated through the measurement of heat distortion temperatures (THD's) via thermomechanical analysis and by the determination of the weight loss at elevated temperatures via thermogravimetric analysis. Glass‐transition temperatures (Tg's) of the silarylene–siloxane segments were measured by differential scanning calorimetry. Hydrosilylation curing was conducted at 60 °C in the presence of chloroplatinic acid (H2PtCl6). The copolymers displayed both high‐temperature resistance and low‐temperature flexibility. We observed Tg of the silarylene–siloxane segment as low as ?77 °C and THD of the polyimide segment as high as 323 °C. The influence of various oligoimide molecular weights on the properties of copolymers containing the same silarylene–siloxane was examined. The effect of various silarylene–siloxane molecular weights on the properties of copolymers containing the same oligoimide was also examined. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4922–4932, 2005  相似文献   
63.
This work reports the synthesis and characterization of diamantane‐based polyimides obtained from 4,9‐bis[4(3,4‐dicarboxyphenoxy)phenyl]diamantane dianhydride and various aromatic diamines. Interestingly, the diamantane‐based polyimides were very stable to hydrolysis. This novel polyimide exhibits a low dielectric constant (2.65–2.77), low moisture absorption (<0.67%), good solubility, high Tg and unusually high thermal stability. Dynamic mechanical analysis (DMA) reveals that the diamantane‐based polyimides have high Tg ranging from 281 to 379 °C. The high‐temperature β1 subglass transition around 285 °C was observed in polyimide 6a derived from 2,2′‐bis(trifluoromethyl)benzidine. This class of novel diamantane‐based polyimide is very promising for electronic applications, because of its good mechanical properties, good thermal stability, low dielectric constant, excellent hydrolytic resistance, and low moisture absorption. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1673–1684, 2009  相似文献   
64.
New well‐defined brush polypyromellitimides with n‐octyloxy and n‐dodecyloxy side chains were prepared by two‐step polycondensations of 3,6‐di(n‐alkyloxy)pyromellitic dianhydrides with various conventional aromatic diamines. Their structures and properties were investigated and compared with those of polyimides without the side chains. The alkyloxylated poly(amic acid)s had inherent viscosities of 0.45–1.09 dL/g. The polyimides showed enhanced solubility in organic solvents and had layered structures in the solid state. As the side‐chain length increased from n‐octyloxy to n‐dodecyloxy, the extent of layered structure formation increased, whereas the glass‐transition temperature and thermal resistance decreased. As for the liquid‐crystal (LC) aligning ability measured with 4‐n‐pentyl‐4′‐cyanobiphenyl on rubbed thin‐film surfaces, all the side‐chain polyimides revealed homogeneous LC alignment parallel to the rubbing direction with distinctively higher pretilt angles than those of the polyimides without the side chains. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3130–3142, 2004  相似文献   
65.
New asymmetrical aromatic dichlorophthalimide monomers containing pendant groups (trifluoromethyl or methyl) were conveniently prepared from inexpensive and commercially available compounds. With these monomers, a new class of soluble polyimides with a regioirregular structure within the polymer backbone was obtained by the Ni(0)‐catalyzed polymerization method. The structures of the polymers were confirmed by various spectroscopic techniques. The polyimides displayed better solubility and higher thermal stability than the corresponding regular polyimides. In addition, fluorinated polyimides in this study had low dielectric constants ranging from 2.52 to 2.78, low moisture absorptions of less than 0.59%, and low thermal expansion coefficients between 10.6 and 19.7 ppm/°C. The oxygen permeability coefficients and permeability selectivity of oxygen to nitrogen of the films were in the ranges of 2.99–4.20 barrer and 5.55–7.50, respectively. We have demonstrated that the synthetic pathway for polyimides provides a successful approach to increasing the solubility and processability of polyimides without sacrificing their thermal stability. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3550–3561, 2007  相似文献   
66.
New poly(imide–benzoxazole) copolymers were prepared directly from a dianhydride, a diacid chloride, and a bis(o‐diaminophenol) monomer in a two‐step method. In the first step, poly(amic acid–hydroxyamide) precursors were synthesized by low‐temperature solution polymerization in an organic solvent. Subsequently, the thermal cyclodehydration of the poly(amic acid–hydroxyamide) precursors at 350 °C produced the corresponding poly(imide–benzoxazole) copolymers. The inherent viscosities of the precursor polymers were around 0.19–0.33 dL/g. The cyclized poly(imide–benzoxazole) copolymers had glass‐transition temperatures in the range of 331–377 °C. The 5% weight loss temperatures ranged from 524 to 535 °C in nitrogen and from 500 to 514 °C in air. The poly(imide–benzoxazole) copolymers were amorphous, as evidenced by the wide‐angle X‐ray diffraction measurements. The structures of the precursor copolymers and the fully cyclized copolymers were characterized by Fourier transform infrared, 1H NMR, and elemental analysis. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6020–6027, 2005  相似文献   
67.
m‐Xylylene bismaleimide, Compimide ? ? Compimide® is a registered trademark.
MXBI (hereafter MXBI), was developed as a building block for formulating bismaleimide resins with improved processability. MXBI on its own, or in combination with 4,4′‐bismaleimidodiphenylmethane (Compimide MDAB, hereafter MDAB) and with 2,2′‐diallylbisphenol‐A as a co‐monomer, provides very low‐melting resin blends, which can be processed at temperatures around 60–80°C via RTM (Resin Transfer Moulding), VARIM (Vacuum Assisted Resin Infusion Moulding), prepregging, and wet filament winding (FW). Uncured and cured resin properties were evaluated. The mechanical property spectrum of the MXBI/MDAB/diallylbisphenol‐A system with varying MXBI/MDAB ratio shows almost equivalent contributions of MXBI and MDAB to the mechanical properties of a system. Higher MXBI proportions are responsible for lower resin viscosities and hence superior processability. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
68.
The paper focuses on the problem of electrostatic interactions in molecular dynamics simulations of thermal properties of heterocyclic polymers. The study focuses on three thermoplastic polyimides synthesized on the basis of 1,3‐bis‐(3′,4‐dicarboxyphenoxy)benzene (dianhydride R) and three diamines: 4,4′‐bis‐(4″‐aminophenoxy) diphenylsulfone (diamine BAPS), 4,4′‐bis‐(4″‐aminophenoxy) biphenyl (diamine BAPB), and 4,4′‐bis‐(4''‐aminophenoxy) diphenyloxide (diamine BAPO). In the molecular dynamics simulations these polyimides were described by the Gromos53a5 force field. To parameterize the electrostatic interactions four methods of calculating the partial atomic charges were chosen: B3LYP/6–31G*(Mulliken), AM1(Mulliken), HF/6–31G*(Mulliken), and HF/6–31G*(ChelpG). As our parameterization is targeted to reproduce thermal properties of the thermoplastic polyimides, the choice of proper partial charges was finalized on a basis of the closest match between computational and experimental data for the thermal expansion coefficients of the polyimides below glass transition temperatures. Our finding clearly show that the best agreement with experimental data is achieved with the Mulliken partial atomic charges calculated by the Hartree‐Fock method with 6–31G* basis set. Furthermore, in addition to the thermal expansion coefficients this set of partial atomic charges predicts an experimentally observed relationship between glass transition temperatures of the three polyimides under study: . A mechanism behind the change in thermal properties upon the change in the chemical structure in considered polyimides may be related to an additional spatial ordering of sulfone groups due to dipole‐dipole interactions. Overall, the modified force‐field is proved to be suitable for accurate prediction of thermal properties of thermoplastic polyimides and can serve as a basis for building up atomistic theoretical models for describing other heterocyclic polymers in bulk. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 912–923  相似文献   
69.
Soluble, fully cyclized m-amino phenyl acetylene terminated polyimides based on several anhydride/diamine monomers were prepared in N-methylpyrrolidine (NMP) and cyclized by solution imidization to controlled molecular weight. The polyimides and a polyamic acid precursor were successfully analyzed by size exclusion chromatography (SEC) utilizing online parallel coupled refractive index and differential viscometer detectors. The calculated M nvalues were varied from 3,000 to 20,000 daltons. N-methylpyrrolidone (NMP), tetrahydrofuran (THF), and chloroform served as mobile phases for the cross-linked polystyrene gel packings. Normal retention behavior of the polyimides was observed in chloroform, THF, and NMP containing LiBr, or in NMP stirred over P2O5 before use. Values of Mark-Houwink-Sakurada exponents for narrow distribution linear polystyrene indicate that pure NMP and NMP with 0.06 M LiBr are good solvents for polystyrene standards at 60°C. In contrast, SEC behavior of polyimides in pure NMP leads to splitting of the peaks with the major portion observed to pass through the columns at the exclusion limit. In contrast to strong polymeric chain expansion of the polyamic acid in dilute solution, presumably due to a polyelectrolyte effect, no increase of intrinsic viscosity of polyimide samples in pure NMP was observed. This exclusion effect of polyimides analyzed in NMP is discussed in terms of possible ion-exclusion from pores of the stationary phase. Differences in polystyrene calibration in NMP with or without additives and the temperature dependence of calibration curves in these mobile phases is discussed as well. ©1995 John Wiley & Sons, Inc.  相似文献   
70.
A series of sulfopropylated and sulfobutylated polyimide copolymers containing fluorenyl groups, SPI‐4, were synthesized to investigate the effect of alkyl side chains on the properties (stability, mechanical strength, water uptake, and proton conductivity) of the polymimide electrolyte membranes. SPI‐4 showed much better hydrolytic stability (in 10% MeOH aq at 100 °C) than the main chain sulfonated polyimide, SPI‐1. Tough, flexible, and ductile membranes were obtained from these copolymers. At high relative humidity all the SPI‐4 membranes showed high mechanical properties (>34 MPa of the maximum stress) and proton conductivity (>0.1 Scm?1). These properties are comparable to or even better than those of the perfluorosulfonic acid ionomer (Nafion 112). The new polyimide ionomers have proved to be a possible candidate as polymer electrolyte membrane for PEFCs and DMFCs. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4439–4445, 2005  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号