首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   25篇
  国内免费   13篇
化学   117篇
物理学   10篇
  2024年   1篇
  2023年   7篇
  2022年   1篇
  2021年   5篇
  2020年   17篇
  2019年   13篇
  2018年   17篇
  2017年   15篇
  2016年   22篇
  2015年   6篇
  2014年   8篇
  2013年   6篇
  2012年   4篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
排序方式: 共有127条查询结果,搜索用时 15 毫秒
121.
杨晓涵  吴雯倩  王彬  林风  吴小海  卢昕 《色谱》2020,38(2):195-205
利用多巴胺(DA)中的儿茶酚基团能与金属有机骨架晶体(MOFs)中金属离子螯合的原理,以ZIF-67为模板,经DA蚀刻-自聚合形成具有孔洞结构的聚多巴胺(PDA)壳层,制备了磁性-MOFs-PDA(Fe3O4@Z67D)新型材料。多种表征手段验证了材料的形貌、结构和性能。新型材料具有亲水性的表面、纳米级的孔径,以及良好的磁响应,被用作磁固相萃取吸附剂。结合高效液相色谱分析手段,建立了萃取检测亚甲蓝(MB)和结晶紫(CV)两种阳离子染料的新方法。在最优的萃取和色谱分析条件下,MB和CV的线性范围分别为0.5~200 μg/L和0.01~50 μg/L,检出限分别为0.04 μg/L和0.008 μg/L,对两种染料的富集因子分别为777和688。新型材料重复使用10次,其萃取性能未见发生变化。该方法成功应用于检测淡水鱼养殖用水中痕量的MB和CV,加标回收率为82.0%~109.0%,RSD低于2.9%。  相似文献   
122.
Inspired by the molecular mechanics of mussel adhesive formation, a novel water‐soluble fluorescent macromolecule (polydopamine–polyethyleneimine (PDA–PEI)) is prepared by one‐pot copolymerization of dopamine (DA) and PEI. In this method, DA is polymerized to form PDA, which is then coupled with PEI mainly through Michael addition. The fluorescence property of PDA–PEI is mainly attributed to the Michael addition of PEI on the 5,6‐dihydroxyindole (DHI) units of PDA, where PEI can form hydrogen bonds with oxidative products such as DHI and force the DHI units to twist out of plane, resulting in a decrease in the intra‐ and intermolecular coupling of PDA. In addition, the influence of various metal cations on the fluorescence of the PDA–PEI copolymer is investigated. This work may facilitate the development of new strategies for controlling the emission characteristics of PDA.

  相似文献   

123.
A thermo‐controlled pesticide release system composed of poly(2‐(dimethylamino)ethyl methacrylate) (PDMAEMA) thin film grafted polydopamine (PDA) (PDMAEMA‐g‐PDA) microcapsules is reported. SiO2 microparticles are used as a template to prepare PDA‐coated SiO2 microparticles. The thermally‐responsive PDMAEMA thin films are grafted on PDA surfaces using a metal‐free surface‐initiated photopolymerization approach without adding any photo­initiator or photosensitizer under UV light irradiation. The subsequent acid etching yields PDMAEMA‐g‐PDA hollow microcapsules. PDMAEMA‐g‐PDA microcapsules exhibit well‐controlled release of avermectin (Av). The results show that the loading ability of PDMAEMA‐g‐PDA microcapsules of Av is up to 52.7% (w/w). The release kinetics of Av demonstrate that Av@PDMAEMA‐g‐PDA microcapsules exhibit temperature‐controlled release performance. This work is significant for controlled release systems. This simple design is expected to be used in various applications, such as in controlled drug release and agriculture‐related fields.

  相似文献   

124.
Inspired by sweet or sugar‐coated bullets that are used for medications in clinics and the structure and function of biological melanin, a novel kind of sweet polydopamine nanoparticles and their anticancer drug doxorubicin loaded counterparts are prepared, which integrate an active targeting function, photothermal therapy, and chemotherapy into one polymeric nanocarrier. The oxidative polymerization of lactosylated dopamine and/or with dopamine are performed under mild conditions and the resulting sweet nanoparticles are thoroughly characterized. When exposed to an 808 nm continuous‐wave diode laser, the magnitude of temperature elevation not only increases with the concentration of nanoparticles, but can also be tuned by the laser power density. The nanoparticles possess strong near infrared light absorption, high photothermal conversion efficiency, and good photostability. The nanoparticles present tunable binding with RCA120 lectin and a targeting effect to HepG2 cells, confirmed by dynamic light scattering, turbidity analysis, MTT assay, and flow cytometry. Importantly, the sweet nanoparticles give the lowest IC50 value of 11.67 μg mL−1 for chemo‐photothermal therapy compared with 43.19 μg mL−1 for single chemotherapy and 67.38 μg mL−1 for photothermal therapy alone, demonstrating a good synergistic effect for the combination therapy.  相似文献   
125.
Liu Q  Yu B  Ye W  Zhou F 《Macromolecular bioscience》2011,11(9):1227-1234
A systematic study of the permeation of small molecules through Pdop microcapsules is reported. The zwitterionic Pdop microcapsules are prepared by oxidative polymerization of dopamine on polystyrene microspheres followed by core removal with THF. Rhodamine 6G, methyl orange and alizarin red are chosen as differently charged probing dyes. The loading amount is affected by pH and dye concentration. Highly selective and unidirectional uptake and release of charged molecules through Pdop microcapsules can be achieved by controlling pH value: at low pH, the Pdop particles incorporate cationic dye (rhodamine 6G); at high pH, they incorporate anionic dyes (methyl orange and alizarin red). In each case, the uptake is highly selective.  相似文献   
126.
Small particle size and strong host–guest interactions are prerequisites in the field of nuclear‐targeting nanocarriers for overcoming the multidrug resistance of cancer cells. A novel scheme of synthesizing hybrid organic–inorganic nanocarriers with mesopores is introduced to enhance the delivery efficiency of therapeutic drugs. Specifically, inorganic silica and organic polydopamine (PDA) are integrated inside the pore framework by the assistance of organic silanes terminated by amino/thiol groups. Silica‐etching by hydrothermal treatment leads to the selective enrichment of bioadhesive PDA and size reductions for the hybrids (to ≈30 nm). Interestingly, a high drug loading capacity (523 µg mg−1 for doxorubicin hydrochloride), as well as pH/ glutathione dual‐responsive drug release properties, are realized by the nanocarriers, owing to their high surface area (825 m2 g−1) and the π‐stacking and/or hydrophobic–hydrophobic interactions stemming from PDA. More importantly, the conjugation of TAT peptide facilitates the intranuclear localization of the nanocarriers and the release of the encapsulated drugs directly within the nucleoplasm of the multidrug resistant MCF‐7/ADR cancer cells. Therefore, these results provide a controllable method of engineering high‐surface‐area nanocarriers with bioadhesive polymers on the pore surface for advanced drug delivery applications.  相似文献   
127.
Pleiotropic drug nanoformulation promises the enhanced efficacy of nanomedicines on the market. In this study, it is demonstrated that polydopamine (PDA)-based drug encapsulation is a potential strategy for such nanoformulation, yet its mechanism remains poorly investigated. This study elucidates the mechanism of PDA-encapsulated Curnanoformulations (CP NPs) using hydrophobic curcumin (Cur) as a model drug via local dopamine (DA) polymerization on self-assembled Cur NPs. The formation of PDA-based drug nanoformulations with the core–shell structure is comprehensively investigated by controlling the key synthetic parameters, deepening the understanding of DA polymerization in the context of drugs. An intriguing morphology evolution is proposed to be the key event in the formation of CP NPs, attributing to the Cur diffusion from the core to the shell of CP NPs. Moreover, the morphological data can be used to guide the optimization of the PDA-based nanoformulation. In addition, the verification of soluble DA polymers in CP NPs hints at the heterogeneous nature of the excipient (i.e., PDA) of CP NPs, providing a cautionary view on the long-term safety of PDA-formulated drugs. In sum, this study would enable the pharmaceutical development of PDA-encapsulated Cur nanomedicines and generalize the PDA-based nanoformulation approach for a wider range of hydrophobic drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号