首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   65篇
  国内免费   14篇
化学   102篇
晶体学   3篇
物理学   126篇
  2023年   6篇
  2022年   18篇
  2021年   21篇
  2020年   20篇
  2019年   26篇
  2018年   11篇
  2017年   15篇
  2016年   24篇
  2015年   14篇
  2014年   23篇
  2013年   26篇
  2012年   4篇
  2011年   7篇
  2010年   5篇
  2009年   4篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2004年   1篇
排序方式: 共有231条查询结果,搜索用时 31 毫秒
21.
在传统脊状等离子体波导的基础上设计了一种带有增益介质层的新型混合脊状等离子体波导,其结构中的介质层部分包含两个区域:前区为单一介质,后区的脊是由2种介质构成的双层脊区。采用二维时域有限差分方法分析了波导结构的传输特性,得到了TM模下的电场分布图,并对输出功率以及传输损耗与结构参数和介质折射率的变化规律进行了讨论。结果表明,在波导中引入的增益介质材料磷化铟后其损耗达到-6 dB/μm。此种波导结构对于光集成芯片的研究与制作具有重要意义。  相似文献   
22.
In this paper, we explore the use of nanostructures for a number of fascinating applications. These applications based on nanostructures include (1) optical sensors, (2) nanopixel printing, (3) improving the resolution of imaging techniques, and (4) lithography. In the sensing field, nanostructures are exploited for advanced sensor performance, namely, the label-free and enhanced sensitivity of (1) the surface plasmon resonance sensor and (2) the extraordinary optical transmission sensor and (3) the high sensitivity and selectivity of surface-enhanced Raman spectroscopy. In addition, research using nanostructures for visual applications was introduced for (1) harnessing nanostructures for full-color pixel printing and (2) exploiting metallic nanostructures to enhance the imaging resolution under diffraction limits based on the plasmonic effect. Finally, we introduce low cost, high accuracy, and fast lithographic methods based on the plasmonic effect by exploiting metallic nanostructures.  相似文献   
23.
Cellulose/Tamarind nut powder (TNP)/Silver nanoparticles (AgNPs) nanocomposites were prepared by in situ generation of AgNPs using regeneration method, followed by solution casting method. In this, TNP was used as a reducing agent. These nanocomposites were characterized using FT-IR spectroscopy, XRD and SEM and studied their mechanical properties and antibacterial activity for medical and packing applications. The FT-IR spectral studies revealed the involvement of functional groups – Polyphenols, Flavonoids and –OH in the process of reducing the metal salts into metal nanoparticles. These nanocomposites showed good antibacterial activity against five bacteria. Improved mechanical properties with good antibacterial activities make these composites suitable for medical, food and packaging applications.  相似文献   
24.
25.
ABSTRACT

The Tamm-plasmon-polariton (TPP) occurs at the interface between a metallic film and the photonic-crystal (PC) substrate. Unlike conventional surface-plasmon-polariton (SPP), TPP can be directly excited by both the transverse electric (TE) and transverse magnetic (TM) electromagnetic waves without using additional coupling optics. The fact that the optical functionality of most plasmonics devices is determined after fabrication limits their applications. Tunable SPP devices by applying liquid crystals (LCs) have been widely demonstrated due to their large birefringence and easy controllability via external stimuli. However, actively tuning TPP is difficult because the localised electric field is between the metallic film and PC substrate, the change of refractive index above the metallic film has only small influences on TPP. This article is intended to briefly review recent progress towards using LCs for actively tuning TPP devices. Not only TPP devices can gain benefits from LCs, we will also discuss the applications of TPP for measuring the anisotropy of the alignment films of LC devices. The sensitivity of the proposed scheme will be discussed.  相似文献   
26.
Introducing plasmonic metals into semiconductor materials has been proven to be an attractive strategy for enhancing photocatalytic activity in the visible region. In this work, a novel and efficient Ag/Ag2WO4/g‐C3N4 (AACN) ternary plasmonic photocatalyst was successfully synthesized using a facile one‐step in situ hydrothermal method. The composition, structure, morphology and optical absorption properties of AACN were investigated using X‐ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and UV–visible diffuse reflectance spectroscopy, respectively. Photocatalytic performance of AACN was evaluated via rhodamine B and tetracycline degradation. The results indicated that AACN had excellent photocatalytic performance for rhodamine B degradation with a rate constant of 0.0125 min?1, which was higher than those of Ag2WO4 and Ag/Ag2WO4. Characterization and photocatalytic tests showed that the strong coupling effect between the Ag/Ag2WO4 nanoparticles and the exfoliated ultrathin g‐C3N4 nanosheets was superior for visible‐light responsivity and reduced the recombination rate of photogenerated electrons and holes. A proposed mechanism is also discussed according to the band energy structure and the experimental results.  相似文献   
27.
The heterostructured Ag nanoparticles decorated Fe3O4 Glutathione (Fe3O4‐Glu‐Ag) nanoparticles (NPs) were synthesized by sonicating glutathione (Glu) with magnetite and further surface immobilization of silver NPs on it. The ensuing magnetic nano catalyst is well characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), powder X‐ray diffraction (PXRD), thermogravimetric analysis (TGA). The prepared Fe3O4‐Glu‐Ag nanoparticles have proved to be an efficient and recyclable nanocatalyst with low catalyst loading for the reduction of nitroarenes and heteronitroarenes to respective amines in the presence of NaBH4 using water as a green solvent which could be easily separated at the end of a reaction using an external magnet and can be recycled up to 5 runs without any significant loss in catalytic activity. Gram scale study for the reduction of 4‐NP has also being carried out successfully and it has been observed that this method can serve as an efficient protocol for reduction of nitroarenes on industrial level.  相似文献   
28.
29.
The self‐assembled structures of atomically precise, ligand‐protected noble metal nanoclusters leading to encapsulation of plasmonic gold nanorods (GNRs) is presented. Unlike highly sophisticated DNA nanotechnology, this strategically simple hydrogen bonding‐directed self‐assembly of nanoclusters leads to octahedral nanocrystals encapsulating GNRs. Specifically, the p‐mercaptobenzoic acid (pMBA)‐protected atomically precise silver nanocluster, Na4[Ag44(pMBA)30], and pMBA‐functionalized GNRs were used. High‐resolution transmission and scanning transmission electron tomographic reconstructions suggest that the geometry of the GNR surface is responsible for directing the assembly of silver nanoclusters via H‐bonding, leading to octahedral symmetry. The use of water‐dispersible gold nanoclusters, Au≈250(pMBA)n and Au102(pMBA)44, also formed layered shells encapsulating GNRs. Such cluster assemblies on colloidal particles are a new category of precision hybrids with diverse possibilities.  相似文献   
30.
采用热蒸发法在SiO2自组装单层膜上制备了帽状锑纳米粒子,通过扫描电镜(SEM)、原子力显微镜(AFM)、X射线衍射仪(XRD)和紫外-可见-近红外(UV-Vis-NIR)分光光度计对帽状复合纳米粒子的表面形貌、结构以及表面等离子共振特性进行了研究和表征。结果表明,制备的复合纳米粒子呈帽状,表面等离子共振峰具有明显的可调谐性,当二氧化硅粒径增大或锑帽层厚度增加时,等离子共振吸收峰位置红移。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号