首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2202篇
  免费   476篇
  国内免费   168篇
化学   2745篇
晶体学   3篇
力学   1篇
物理学   97篇
  2024年   3篇
  2023年   42篇
  2022年   66篇
  2021年   132篇
  2020年   225篇
  2019年   158篇
  2018年   123篇
  2017年   107篇
  2016年   167篇
  2015年   170篇
  2014年   189篇
  2013年   174篇
  2012年   172篇
  2011年   143篇
  2010年   144篇
  2009年   140篇
  2008年   138篇
  2007年   91篇
  2006年   107篇
  2005年   85篇
  2004年   78篇
  2003年   57篇
  2002年   45篇
  2001年   17篇
  2000年   13篇
  1999年   7篇
  1998年   7篇
  1997年   8篇
  1996年   7篇
  1995年   13篇
  1994年   11篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1987年   1篇
排序方式: 共有2846条查询结果,搜索用时 17 毫秒
81.
In this study, a series of linear poly(triazole)s (PTAs) were successfully synthesized by the metal‐ and solvent‐free, thermal click polymerization of diazide and dialkyne (A2 + B2) monomers. All click polymerizations proceeded smoothly at 80 °C in an open atmosphere without protection from oxygen and moisture. After being polymerized for 36 h, the crude polymer was further fractionated into three fractions using a multistep precipitation method. By selectively choosing precipitating agents, this process produced poly(triazole) fractions with low polydispersity index (<1.30). The resulting PTAs are soluble in common organic solvents and stable at a temperature up to 320 °C. Furthermore, the methyl benzoate moieties in the main chain can serve as useful building blocks for further postpolymerization functionalization, yielding 1,2,4‐triazole derivatives. This functionalization strategy offers potential for the development of novel triazole‐based materials. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
82.
A series of novel low band gap polymers containing conjugated side chains with 4,7‐dithien‐5‐yl‐2,1,3‐benzodiathiazole and different electron‐withdrawing end groups of aldehyde ( PT‐DTBTCHO ), 2‐ethylhexyl cyanoacetate ( PT‐DTBTCN ), 1,3‐diethyl‐2‐thiobarbituric acid ( PT‐DTBTDT ), and electron‐donating end group of 2‐methylthiophene ( PT‐DTBTMT ) have been designed and synthesized. All polymers exhibit good solubility in common organic solvents, film‐forming ability, and thermal stability. These conjugated polymers show the broad ultraviolet‐visible absorption and the narrow optical band gaps in the range of 1.65–1.90 eV. Through changing the end group of conjugated side chains, the photophysical properties and energy levels of the polymers were tuned effectively. Bulk heterojunction solar cells based on the blend of these polymers and (6,6)‐phenyl‐C61‐butyric acid methyl ester (PC61BM) reached the best power conversion efficiency (PCE) of 2.72%. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
83.
A methacrylate‐based crosslinking hyperbranced polymers have been synthesized through initiator‐fragment incorporation radical polymerization and used for the temperature stable electro‐optic (EO) polymer application. This polymer consists of methyl methacrylate, 2‐metacryloxyethyl isocyanate, and ethylene glycol dimethacrylate (EGDMA) monomers. The use of EGDMA as a bifunctional unit resulted in the solvent‐soluble crosslinking hyperbranched chain, so that the EO polymer enhanced glass transition temperatures. A phenyl vinylene thiophene vinylene bridge nonlinear optical chromophore was attached to the polymer backbone as the side‐chain by a post‐functionalization reaction. The loading concentration of the chromophore was varied between 30 and 50 wt % by simply changing the mixing ratio of the precursor polymer to the chromophore. The synthesized EO polymers produced optical quality films with a light propagation loss of 0.61 dB/cm in a slab waveguide at 1.31 μm. The electrically poled film had an EO coefficient (r33) of 139 pm/V at 1.31 μm. The EO crosslinking hyperbranced polymer had a high‐glass transition temperature of 170 °C, and exhibited excellent temporal stability of the EO activity at 85 °C for 500 h. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
84.
The characteristics of the pnicogen bond are explored using a variety of quantum chemical techniques. In particular, this interaction is compared with its halogen and chalcogen bond cousins, as well as with the more common H‐bond. In general, these bonds are all of comparable strength. More specifically, they are strengthened by the presence of an electronegative substituent on the electron‐acceptor atom, and each gains strength as one moves down the appropriate column of the periodic table, for example, from N to P to As. These noncovalent bonds owe their stability to a mixture in nearly equal parts of electrostatic attraction and charge transfer, along with a smaller dispersion component. The charge transfer arises from the overlap between the lone pair of the electron donor and a σ* antibond of the acceptor. The angular characteristics of the equilibrium geometry result primarily from a compromise between electrostatic and induction forces. Angular distortions of the H‐bond are typically less energetically demanding than comparable bends of the other noncovalent bonds. © 2012 Wiley Periodicals, Inc.  相似文献   
85.
Novel copolymers composed of a styrene (St) derivative bearing a vicinal tricarbonyl moiety and various vinyl monomers such as St, methyl methacrylate (MMA), and N‐vinylpyrrolidone (NVP) were synthesized by (1) radical copolymerization of a St derivative with a 1,3‐diketone structure with St, MMA, and NVP and (2) successive oxidation of the resulting copolymers with N‐bromosuccinimide in DMSO to convert their 1,3‐diketone moieties in the side chains into the corresponding vicinal tricarbonyl moieties. Their tricarbonyl moieties were readily hydrated in water‐containing acetone to generate the corresponding copolymers bearing geminal diol structures in the side chains. On the other hand, heating the resulting copolymers bearing the geminal diol structures in vacuo‐enabled successful recovery of the vicinal tricarbonyl moieties to demonstrate the reversible nature of this system. The hydration behavior in powdery state under air atmosphere saturated by water was also investigated. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
86.
In this study, we succeeded in the in situ activation of nonactivated ester moieties embedded in polymer structures. Although poly(pentafluorophenyl methacrylate) (PPFPMA) can react with 2‐ethylhexylamine at 50 °C in the presence of proton scavenger such as NEt3, such conditions were not suitable for poly(phenyl methacrylate) (PPhMA). Nevertheless, the combination of organo‐activating agents, namely 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) and 1,2,4‐triazole (TZ) led to a facile conversion from ester to amide for PPhMA. The reaction between PPhMA and 2‐ethylhexylamine was conducted at 120 °C in the presence of one equivalent of TZ and three equivalents of DBU and yielded >99% ester conversion to afford corresponding polymethacrylamide derivatives as confirmed by FT‐IR and 1H NMR measurements. In addition, poly(2,2,2‐trifluoroethyl methacrylate) (PTFEMA) and poly(methyl methacrylate) (PMMA) were also allowed to react with amines in the presence of the organo‐activating agents with dramatically increased conversions (>70%). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1353–1358  相似文献   
87.
Ab initio calculations were performed on complexes of ZH4+ (Z=N, P, As) and their fluoro derivatives, ZFH3+ and ZF4+, with a HCN (or LiCN) molecule acting as the Lewis base through the nitrogen electronegative center. It was found that the complexes are linked by the Z? H???N hydrogen bond or another type of noncovalent interaction in which the tetravalent heavy atom of the cation acts as the Lewis acid center, that is, when the Z???N link exists, which may be classified as the σ‐hole bond. The formation of the latter interaction is usually preferable to the formation of the corresponding hydrogen bond. The Z???N interaction may be also considered as the preliminary stage of the SN2 reaction. This is supported by the observation that for a short Z???N contact, the corresponding complex geometry coincides with the trigonal‐bipyramidal geometry typical for the transition state of the SN2 reaction. The Z???N interaction for some of complexes analyzed here possesses characteristics typical for covalent bonds. Numerous interrelations between geometrical, topological and energetic parameters are discussed. The natural bond orbital method as well as the Quantum Theory of “Atoms in Molecules” is applied to characterize interactions in the analyzed complexes. The experimental evidences of the existence of these interactions, based on the Cambridge Structure Database search, are also presented. In addition, it is justified that mechanisms of the formation of the Z???N interactions are similar to the processes occurring for the other noncovalent links. The formation of Z???N interaction as well as of other interactions may be explained with the use of the σ‐hole concept.  相似文献   
88.
The multiaddition chemistry of azafullerene C59N has been scarcely explored, and the isolation of pure bisadducts is in its infancy. Encouraged by the recent regioselective synthesis of the inherently chiral equatorialface bisadduct of C59N, we focused on the isolation of the first trans-4 bisadduct in a simple two-step approach. The first regioselective synthesis of the trans-4 bisadduct of C59N by using cyclo-[2]-dodecylmalonate as a tether is now reported. The newly synthesized bisadduct has C1 symmetry, as evidenced by 13C NMR, while X-ray crystallography validated the trans-4′ addition pattern. Furthermore, the inherently chiral trans-4′ C59N bisadduct was enantiomerically resolved, and the mirror-image relation of the two enantiomers was probed by circular dichroism spectroscopy. Finally, UV-Vis and redox assays suggested that the addition pattern has a reflection in the light-harvesting and redox properties of the bisadduct.  相似文献   
89.
The diborene 1 was synthesized by reduction of a mixture of 1,2-di-9-anthryl-1,2-dibromodiborane(4) ( 6 ) and trimethylphosphine with potassium graphite. The X-ray structure of 1 shows the two anthryl rings to be parallel and their π(C14) systems perpendicular to the diborene π(B=B) system. This twisted conformation allows for intercalation of the relatively high-lying π(B=B) orbital and the low-lying π* orbital of the anthryl moiety with no significant conjugation, resulting in a small HOMO–LUMO gap (HLG) and ultimately a C−H borylation of the anthryl unit. The HLG of 1 was estimated to be 1.57 eV from the onset of the long wavelength band in its UV/Vis absorption spectrum (THF, λonset=788 nm). The oxidation of 1 with elemental selenium afforded diboraselenirane 8 in quantitative yield. By oxidative abstraction of one phosphine ligand by another equivalent of elemental selenium, the B−B and C1−H bonds of 8 were cleaved to give the cyclic 1,9-diborylanthracene 9 .  相似文献   
90.
In this study, the maleimide‐thiophene copolymer‐functionalized graphite oxide sheets (PTM21‐GOS) and carbon nanotubes (PTM21‐CNT) were developed for polymer solar cell (PSC) applications. The grafting of PTM21‐OH onto the CNT and GO sheets was confirmed using FTIR spectroscopy. PTM21‐CNT and PTM21‐GOS exhibited excellent dispersal behavior in organic solvents. Better thermal stability was observed for PTM21‐CNT and PTM21‐GOS as compared with that for PTM21‐OH. In addition, the optical band gaps of PTM21‐GOS and PTM21‐CNT were lower than that of PTM21‐OH. We incorporated PTM21‐GOS and PTM21‐CNT individually into poly(3‐hexylthiophene) (P3HT)/[6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) blends for use as photoconversion layers of PSCs. Good distributional homogeneity was observed for PTM21‐GOS or PTM21‐CNT in the P3HT/PCBM blend film. The UV–vis absorption peaks of the blend films red‐shifted slightly upon increasing the content of PTM21‐GOS or PTM21‐CNT. The band gap energies and LUMO/HOMO energy levels of the P3HT/PTM21‐GOS and P3HT/PTM21‐CNT blend films were slightly lower than those of the P3HT film. The conjugated polymer‐functionalized PTM21‐GOS and PTM21‐CNT behaved as efficient electron acceptors and as charge‐transport assisters when incorporated into the photoactive layers of the PSCs. PV performance of the PSCs was enhanced after incorporating PTM21‐GOS or PTM21‐CNT in the P3HT/PCBM blend. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号