首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2132篇
  免费   281篇
  国内免费   208篇
化学   2280篇
晶体学   13篇
力学   28篇
综合类   3篇
数学   12篇
物理学   285篇
  2024年   11篇
  2023年   55篇
  2022年   34篇
  2021年   77篇
  2020年   120篇
  2019年   115篇
  2018年   96篇
  2017年   131篇
  2016年   163篇
  2015年   113篇
  2014年   125篇
  2013年   277篇
  2012年   125篇
  2011年   133篇
  2010年   109篇
  2009年   115篇
  2008年   138篇
  2007年   115篇
  2006年   108篇
  2005年   103篇
  2004年   101篇
  2003年   74篇
  2002年   55篇
  2001年   38篇
  2000年   21篇
  1999年   22篇
  1998年   17篇
  1997年   12篇
  1996年   2篇
  1995年   3篇
  1994年   5篇
  1993年   1篇
  1992年   3篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有2621条查询结果,搜索用时 533 毫秒
71.
A very simple yet novel strategy to significantly enhance the mechanical properties of hydrogels is reported. Poly(acrylic acid) (PAA) hydrogels with aligned macroporous channels are immersed in the aqueous solutions of poly(dimethyl diallyl ammonium chloride) (PDMDAAC). Strong electrostatic interactions are formed between the anionic PAA and cationic PDMDAAC chains. In the resultant PAA/PDMDAAC hybrid hydrogels, the mass ratio of PDMDAAC to PAA is about 0.2 and PDMDAAC is uniformly distributed throughout the gels. The mechanical properties of the formed hybrid hydrogels are largely enhanced in comparison with the original PAA hydrogels. The hybrid hydrogels exhibit high tensile strengths (0.38–1.73 MPa), elastic moduli (0.21–1.59 MPa) and toughness (up to 3.0 MJ/m3), about several to more than 10 times those of the corresponding PAA hydrogels. In addition, the PAA/PDMDAAC hydrogels also show excellent and very rapid shape recovery ability in both air and deionized water. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2432–2441  相似文献   
72.
We present herein the preparation of four different hydrogels based on the pseudopeptide gelator Fmoc‐l ‐Phe‐d ‐Oxd‐OH (Fmoc=fluorenylmethyloxycarbonyl), either by changing the gelator concentration or adding graphene oxide (GO) to the water solution. The hydrogels have been analysed by rheological studies that demonstrated that pure hydrogels are slightly stronger compared to GO‐loaded hydrogels. Then the hydrogels efficiency to trap the cationic methylene blue (MB) and anionic eosin Y (EY) dyes has been analyzed. MB is efficiently trapped by both the pure hydrogel and the GO‐loaded hydrogel through π–π interactions and electrostatic interactions. In contrast, the removal of the anionic EY is achieved in less satisfactory yields, due to the unfavourable electrostatic interactions between the dye, the gelator and GO.  相似文献   
73.
A series of hydrogels from 2‐ethyl‐2‐oxazoline and three bis(2‐oxazoline) crosslinkers—1,4‐butylene‐2,2′‐bis(2‐oxazoline), 1,6‐hexamethylene‐2,2′‐bis(2‐oxazoline), and 1,8‐octamethylene‐2,2′‐bis(2‐oxazoline)—are prepared. The hydrogels differ by the length of aliphatic chain of crosslinker and by the percentage of crosslinker (2–10%). The influence of the type and the percentage of the crosslinker on swelling properties, mechanical properties, and state of water is studied. The equilibrium swelling degree in water ranges from 2 to 20. With a proper selection of the crosslinker, Young's modulus can be varied from 10 kPa to almost 100 kPa. To evaluate the potential for medical applications, the cytotoxicity of extracts and the contact toxicity toward murine fibroblasts are measured. The hydrogels with the crosslinker containing a shorter aliphatic exhibit low toxicity toward fibroblast cells. Moreover, the viability and the proliferation of pancreatic β‐cells incubated inside hydrogels for 12 days are analyzed. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1548–1559  相似文献   
74.
NMR spectra were collected for poly(N‐isopropylacrylamide) (PNIPAAm) hydrogel using high‐resolution magic angle spinning (HRMAS) after gel pieces were hydrated in the presence of D2O, NaF, NaCl, and NaI aqueous solutions. Changes in the peak height intensity of the spectra provide quantitative insight into the phase transition process. The thermodynamic values of the phase transition were calculated using a van't Hoff analysis of the NMR data. Unlike the trend observed for decreases in the (LCST), changes in the enthalpy and entropy did not clearly display a linear dependence with respect to salt concentration. Rather, it was observed that increases in salt concentration did not affect the enthalpy and entropy to the extent as the initial change observed between no salt and 100 mM solutions. Finally, the effect of salts on the hysteresis of the rehydrating process was observed. Hysteresis occurs due to the need for hydrophobic interactions to break down before water is able to infiltrate the polymer matrix. NaF stabilizes hydrophobic interactions while NaI destabilize hydrophobic interactions, causing them to break down at higher temperatures. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
75.
To synthesize the novel molecular‐ and pH‐stimulus‐responsive hydrogel, we prepared poly(ethylene glycol)‐based hydrogel containing ionic groups. We evaluated the fundamental swelling/shrinking properties of the hydrogels synthesized by various conditions. Decreasing the molecular weight of a crosslinker provided the increasing of the equilibrium swelling ratio. Also, the equilibrium swelling ratio was changed by the introduction of functional ionic monomers and its compositions. Furthermore, the swelling/shrinking behaviors of the hydrogels were affected by the environmental condition of aqueous solution, in fact the hydrogels were considerably shrunk (to one‐fifth volume) using a di‐ionic solute in the aqueous solution through the ionic interactions between the hydrogel and the solutes. Additionally, the specific shrinking to diamine compounds was also observed in response to pH change. These results clearly show the swelling/shrinking responsibility of the hydrogels toward the molecular recognitions and its pH conditions. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3153–3158  相似文献   
76.
A heterogeneous catalyst (FeSi/Ag/VO) based on silver and vanadyl as active sites and mesoporous silica‐coated nanospheres of magnetite (Fe3O4@m‐SiO2) as support was successfully prepared by deposition of Ag nanoparticles and the covalent grafting of vanadyl(IV) acetylacetonate on Fe3O4@m‐SiO2. The catalyst exhibited excellent activity for the oxidation of alkanes, benzene and alkylaromatics using green oxidant H2O2 and oxalic acid in acetonitrile at 60 °C.  相似文献   
77.
Graphene oxide ‐ Fe3O4 ‐ NH3+H2PW12O40 magnetic nanocomposite (GO/Fe3O4/HPW) was prepared by linking amino ‐ functionalized Fe3O4 nanoparticles (Fe3O4 ‐ NH2) on the graphene oxide (GO), and then grafting 12 ‐ tungstophosphoric acid (H3PW12O40) on the graphene oxide ‐ magnetite hybrid (GO ‐ Fe3O4 ‐ NH2). The obtained GO/Fe3O4/HPW nanocomposite was well characterized with different techniques such as FT ‐ IR, TEM, SEM, XRD, EDX, TGA ‐ DTA, AGFM, ICP and BET measurements. The used techniques showed that the graphene oxide layers were well prepared and the various stages of preparation of the GO/Fe3O4/HPW nanocomposites successfully completed. This new nanocomposite displayed excellent performance as a heterogeneous catalyst in the oxidation of alcohols with H2O2. The as ‐ prepared GO/Fe3O4/HPW catalyst was more stable and recyclable at least five times without significantly reducing its catalytic activity.  相似文献   
78.
Structural peculiarities and supramolecular organization of medicinally promising nanocomposites, synthesized from humic substances, which essentially differ depending on decomposition degree, have been studied using electron spin resonance, transmission electron, and confocal laser scanning microscopy techniques and some other modern physical–chemical methods. It is shown that stable zero-valent gold nanoparticle of about 10–17?nm in size are formed in a natural macromolecular matrix. The nanocomposites obtained turn out to be stable in aggregative state for a long time and preserve their properties that are extremely important for prospective medicinal substances.  相似文献   
79.
Per- and polyfluoroalkyl substances (PFAS) have rapidly accumulated in the environment due to their widespread use prior to commercial discussion in the early 21st century, and their slow degradation has magnified concerns of their potential toxicity. Monitoring their distribution is, therefore, necessary to evaluate and control their impact on the health of exposed populations. This investigation evaluates the capability of a simple polymeric detection scheme for PFAS based on crosslinked, thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) hydrogels. Surveying swelling perturbations induced by several hydrotropes and comparable hydrocarbon analogs, tetraethylammonium perfluorooctane sulfonate (TPFOS) showed a significantly higher swelling ratio on a mass basis (65.5 ± 8.8 at 15°C) than any of the other analytes tested. Combining swelling with the fluorimetric response of a solvachromatic dye, nile red, revealed the fluorosurfactant to initiate observable aggregation (i.e., its critical aggregation concentration) at 0.05 mM and reach saturation (i.e., its charge neutralization concentration) at 0.5 mM. The fluorosurfactant was found to homogeneously distribute throughout the polymer matrix with energy dispersive X-ray spectroscopy, marking the swelling response as a peculiar nexus of fluorinated interfacial positioning and delocalized electrostatic repulsion. Results from the current study hold promise for exploiting the physiochemical response of PNIPAM to assess TPFOS's concentration.  相似文献   
80.
It remains challenging to satisfy the combined performances for hydrogels with excellent mechanical behavior, high deformability, and super recoverability under harsh environmental conditions. In this study, we first established a strong polymer network via the crosslinking of polymer chains on the surfaces of sub‐5‐nm calcium hydroxide nanospherulites in ethylene glycol solvent. The organic gel expressed excellent mechanical properties such as a recoverable compressive engineering stress of 249 MPa and an elongation stress of 402 KPa, which was attributed to the uniform nanosized crosslinking structure as characterized by SEM. Moreover, the nonvolatile solvent remained in the gel, meaning that the sample can resist a wide temperature range of ?56 to 100 °C without losing the elastic properties. This novel organic gel could provide promising routes to develop the ideal elastic carriers for wearable devices, smart skin sensors, and damping materials. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 713–721  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号