首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   4篇
  国内免费   3篇
化学   51篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   8篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2005年   4篇
  2004年   1篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1992年   1篇
排序方式: 共有51条查询结果,搜索用时 17 毫秒
31.
Photoredox catalysis (PRC) and synthetic organic electrochemistry (SOE) are often considered competing technologies in organic synthesis. Their fusion has been largely overlooked. We review state‐of‐the‐art synthetic organic photoelectrochemistry, grouping examples into three categories: 1) electrochemically mediated photoredox catalysis (e‐PRC), 2) decoupled photoelectrochemistry (dPEC), and 3) interfacial photoelectrochemistry (iPEC). Such synergies prove beneficial not only for synthetic “greenness” and chemical selectivity, but also in the accumulation of energy for accessing super‐oxidizing or ‐reducing single electron transfer (SET) agents. Opportunities and challenges in this emerging and exciting field are discussed.  相似文献   
32.
Use of redox mediators (RMs) is an effective strategy to enhance reaction kinetics of multi‐electron sulfur electrochemistry. However, the soluble small‐molecule RMs usually aggravate the internal shuttle and thus further reduce the battery efficiency and cyclability. A semi‐immobilization strategy is now proposed for RM design to effectively regulate the sulfur electrochemistry while circumvent the inherent shuttle issue in a working battery. Small imide molecules as the model RMs were co‐polymerized with moderate‐chained polyether, rendering a semi‐immobilized RM (PIPE) that is spatially restrained yet kinetically active. A small amount of PIPE (5 % in cathode) extended the cyclability of sulfur cathode from 37 to 190 cycles with 80 % capacity retention at 0.5 C. The semi‐immobilization strategy helps to understand RM‐assisted sulfur electrochemistry in alkali metal batteries and enlightens the chemical design of active additives for advanced electrochemical energy storage devices.  相似文献   
33.
34.
Although organic electrosynthesis is generally considered to be a green method, the necessity for excess amounts of supporting electrolyte constitutes a severe drawback. Furthermore, the employment of redox mediators results in an additional separation problem. In this context, we have explored the applicability of soluble polyelectrolytes and polymediators with the TEMPO‐mediated transformation of alcohols into carbonyl compounds as a test reaction. Catalyst benchmarking based on cyclic voltammetry studies indicated that the redox‐active polymer can compete with molecularly defined TEMPO species. Alcohol oxidation was also highly efficient on a preparative scale, and our polymer‐based approach allowed for the separation of both mediator and supporting electrolyte in a single membrane filtration step. Moreover, we have shown that both components can be reused multiple times.  相似文献   
35.
Electrolysis of alkyl benzyl ketones in MeOH in an undivided electrolyzer in the presence of the NaI—NaOH mediator system induces the process similar to the Favorsky rearrangement to produce arylalkanecarboxylates in 80—90% yield (per substance) and with the 50—55% current efficiency.  相似文献   
36.
Electrooxidation of alcohols in water involving water-soluble N-oxyl compounds (WS-TEMPOs) proceeded smoothly to afford the corresponding ketones and aldehydes in good yields. Notably, most of WS-TEMPOs in water remained intact after the electrolysis. The aqueous solution containing WS-TEMPOs was recovered easily and repeatedly used for the electrooxidation of alcohols, offering a totally closed system.  相似文献   
37.
The redox-active multiligand-binding flavoprotein dodecin binds flavins with high affinity when they are oxidized, whereas flavin reduction induces the dissociation of the holoprotein complex in apododecin and free flavin ligands. Dodecin could be reconstituted at flavin-terminated dsDNA monolayers. The binding and release of apododecin triggered by the redox state of the flavins can be monitored by surface-sensitive techniques such as surface plasmon resonance and quartz crystal microbalance measurements with dissipation monitoring. It has been shown that flavin reduction followed by the release of apododecin can be achieved by mediated electron transfer in the presence of the redox mediator amino ethyl viologen and by chemical flavin reduction, whereas flavin reduction by direct electron transfer via the dsDNA tethers is not possible. The combination of electrochemistry with surface-sensitive techniques such as surface plasmon resonance or quartz crystal microbalance measurements with dissipation monitoring could be highly beneficial to confirm or disprove the mechanism, which has been postulated for the action of primases, which contain a [4Fe4S] cluster and are involved in DNA replication. It has been postulated that these enzymes bind the DNA template when the cluster is in the [4Fe4S]3+ state, whereas they are released when the cluster is reduced via electron transfer through DNA and the protein environment.  相似文献   
38.
毕秀茹  孟旭  赵培庆 《分子催化》2020,34(5):462-474
氧化锰八面体分子筛具有优异的氧化性、离子交换性和导电性等性能,被广泛应用于环保、半导体、有机合成等诸多领域。由于体相存在混合价态Mnn+和丰富的表面缺陷空位,使该分子筛同O2或H2O2等绿色氧化剂之间容易发生快速电子转移,活化绿色氧化剂,近年来作为非均相催化剂和功能性载体应用于有机分子的清洁合成中,表现出优异的催化活性、反应选择性和结构稳定性。本文综述了近年来OMS-2催化剂在有机分子清洁氧化合成中,及作为具有电子转移介质性能的载体材料的研究进展,并对未来发展提出了展望。  相似文献   
39.
Carbon‐based electrochemical double‐layer capacitors (EDLCs) generally exhibit high power and long life, but low energy density/capacitance. Pore/morphology optimization and pseudo‐capacitive materials modification of carbon materials have been used to improve electrode capacitance, but leading to the consumption of tap density, conductivity and stability. Introducing soluble redox mediators into electrolyte is a promising alternative to improve the capacitance of electrode. However, it is difficult to find one redox mediator that can provide additional capacitance for both positive and negative electrodes simultaneously. Here, an ambipolar organic radical, 2, 2, 6, 6‐tetramethylpiperidinyloxyl (TEMPO) is first introduced to the electrolyte, which can substantially contribute additional pseudo‐capacitance by oxidation at the positive electrode and reduction at the negative electrode simultaneously. The EDLC with TEMPO mediator delivers an energy density as high as 51 Wh kg?1, 2.4 times of the capacitor without TEMPO, and a long cycle stability over 4000 cycles. The achieved results potentially point a new way to improve the energy density of EDLCs.  相似文献   
40.
Electrolysis of cycloalkylidenemalononitriles and malononitrile in MeOH in an undivided cell in the presence of the NaBr—NaOMe mediator system gives spirotricyclic compounds containing cyclopropane and pyrroline fragments in 50—77% yields. Spirobicyclic and spirotricyclic tetracyanocyclopropanes undergo electrolysis in alcohols to afford spirotricyclic and spirotetracyclic products containing cyclopropane and pyrroline fragments in 50—93% yields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号