首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   691篇
  免费   99篇
  国内免费   50篇
化学   711篇
晶体学   3篇
力学   1篇
综合类   8篇
数学   3篇
物理学   114篇
  2023年   13篇
  2022年   15篇
  2021年   86篇
  2020年   55篇
  2019年   25篇
  2018年   13篇
  2017年   21篇
  2016年   45篇
  2015年   40篇
  2014年   43篇
  2013年   45篇
  2012年   31篇
  2011年   40篇
  2010年   20篇
  2009年   37篇
  2008年   24篇
  2007年   34篇
  2006年   23篇
  2005年   22篇
  2004年   45篇
  2003年   25篇
  2002年   21篇
  2001年   18篇
  2000年   15篇
  1999年   15篇
  1998年   9篇
  1997年   4篇
  1996年   5篇
  1995年   12篇
  1994年   5篇
  1993年   8篇
  1992年   4篇
  1991年   4篇
  1990年   1篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1984年   3篇
  1982年   2篇
  1978年   1篇
  1976年   1篇
排序方式: 共有840条查询结果,搜索用时 15 毫秒
831.
Oxidative stress in aquatic organisms might suppress the immune system and propagate infectious diseases. This study aimed to investigate the protective effect of polyphenolic extracts from spent coffee grounds (SCG) against oxidative stress, induced by H2O2, in C. viridis brain cells, through an in vitro model. Hydrophilic extracts from SCG are rich in quinic, ferulic and caffeic acids and showed antioxidant capacity in DPPH, ORAC and FRAP assays. Furthermore, pretreatment of C. viridis brain cells with the polyphenolic extracts from SCG (230 and 460 µg/mL) for 24 h prior to 100 µM H2O2 exposure (1 h) significantly increased antioxidant enzymes activity (superoxide dismutase and catalase) and reduced lipid peroxidation (measured by MDA levels). These results suggest that polyphenols found in SCG extracts exert an antioxidative protective effect against oxidative stress in C. viridis brain cells by stimulating the activity of SOD and CAT.  相似文献   
832.
Gram-negative bacterial cell surface component lipopolysaccharide (LPS) and its active principle, lipid A, exhibit immunostimulatory effects and have the potential to act as adjuvants. However, canonical LPS acts as an endotoxin by hyperstimulating the immune response. Therefore, LPS and lipid A must be structurally modified to minimize their toxic effects while maintaining their adjuvant effect for application as vaccine adjuvants. In the field of chemical ecology research, various biological phenomena occurring among organisms are considered molecular interactions. Recently, the hypothesis has been proposed that LPS and lipid A mediate bacterial–host chemical ecology to regulate various host biological phenomena, mainly immunity. Parasitic and symbiotic bacteria inhabiting the host are predicted to possess low-toxicity immunomodulators due to the chemical structural changes of their LPS caused by co-evolution with the host. Studies on the chemical synthesis and functional evaluation of their lipid As have been developed to test this hypothesis and to apply them to low-toxicity and safe adjuvants.  相似文献   
833.
Strong films were prepared from an RNA/lipid complex by casting from organic solutions. RNA (mainly tRNA) was extracted from yeasts, followed by a replacement of the sodium counterions of the tRNA phosphate units by cationic amphiphiles. RNA units in the RNA/lipid film could be aligned in one direction by stretching due to the presence of intermolecular hydrogen bonds. The film showed physical strength and was biodegradable.  相似文献   
834.
NAI-112, a glycosylated, labionine-containing lanthipeptide with weak antibacterial activity, has demonstrated analgesic activity in relevant mouse models of nociceptive and neuropathic pain. However, the mechanism(s) through which NAI-112 exerts its analgesic and antibacterial activities is not known. In this study, we analyzed changes in the spinal cord lipidome resulting from treatment with NAI-112 of naive and in-pain mice. Notably, NAI-112 led to an increase in phosphatidic acid levels in both no-pain and pain models and to a decrease in lysophosphatidic acid levels in the pain model only. We also showed that NAI-112 can form complexes with dipalmitoyl-phosphatidic acid and that Staphylococcus aureus can become resistant to NAI-112 through serial passages at sub-inhibitory concentrations of the compound. The resulting resistant mutants were phenotypically and genotypically related to vancomycin-insensitive S. aureus strains, suggesting that NAI-112 binds to the peptidoglycan intermediate lipid II. Altogether, our results suggest that NAI-112 binds to phosphate-containing lipids and blocks pain sensation by decreasing levels of lysophosphatidic acid in the TRPV1 pathway.  相似文献   
835.
Irbesartan (IR) is an angiotensin II receptor antagonist drug with antihypertensive activity. IR bioavailability is limited due to poor solubility and first-pass metabolism. The current investigation aimed to design, develop, and characterize the cyclodextrin(s) (CD) complexed IR (IR-CD) loaded solid lipid nanoparticles (IR-CD-SLNs) for enhanced solubility, sustained release behavior, and subsequently improved bioavailability through oral administration. Based on phase solubility studies, solid complexes were prepared by the coacervation followed by lyophilization method and characterized for drug content, inclusion efficiency, solubility, and in vitro dissolution. IR-CD inclusion complexes demonstrated enhancement of solubility and dissolution rate of IR. However, the dissolution efficiency was significantly increased with hydroxypropyl-βCD (HP-βCD) inclusion complex than beta-CD (βCD). SLNs were obtained by hot homogenization coupled with the ultrasonication method with IR/HP-βCD inclusion complex loaded into Dynasan 112 and glycerol monostearate (GMS). SLNs were evaluated for physicochemical characteristics, in vitro release, differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD), and physical stability at room temperature for two months. The optimized SLNs formulation showed particle size, polydispersity index, zeta potential, assay, and entrapment efficiency of 257.6 ± 5.1 nm, 0.21 ± 0.03, −30.5 ± 4.1 mV, 99.8 ± 2.5, and 93.7 ± 2.5%, respectively. IR-CD-SLN and IR-SLN dispersions showed sustained release of IR compared to the IR-CD inclusion complexes. DSC results complimented PXRD results by the absence of IR endothermic peak. Optimized IR-CD complex, IR-SLN, and IR-CD-SLN formulations were stable for two months at room temperature. Thus, the current IR oral formulation may exhibit improved oral bioavailability and prolonged antihypertensive activity, which may improve therapeutic outcomes in the treatment of hypertension and heart failure.  相似文献   
836.
The use of nucleic acids (NAs) has revolutionized medical approaches and ushered in a new era of combating various diseases. Accordingly, there is an increasing demand for accurate identification, localization, quantification, and characterization of NAs encapsulated in nonviral or viral vectors. The vast spectrum of molecular dimensions and intra- and intermolecular interactions presents a formidable obstacle for NA analytical development. Typically, the comprehensive analysis of encapsulated NAs, free NAs, and their spatial distribution poses a challenge that is seldom tackled in its complete complexity. The identification of appropriate physicochemical methodologies for large nonencapsulated or encapsulated NAs is particularly intricate and necessitates an evaluation of the analytical outcomes and their appropriateness in addressing critical quality attributes. In this work, we examine the analytics of non-encapsulated or encapsulated large NAs (>500 nucleotides) utilizing capillary electrophoresis (CE) and liquid chromatography (LC) methodologies such as free zone CE, gel CE, affinity CE, and ion pair high-performance liquid chromatography (HPLC). These methodologies create a complete picture of the NA's critical quality attributes, including quantity, identity, purity, and content ratio.  相似文献   
837.
Few studies have examined the relationship between lipid metabolism and kidney stone formation, particularly the role of key lipid regulatory factors in kidney stone formation. We evaluated the effect of the lipid regulatory factor-peroxisome proliferator-activated receptor alpha on the formation of renal stones in mice by injecting them with glyoxylate followed by treatment with either a peroxisome proliferator-activated receptor alpha agonist fenofibrate or an antagonist GW6471 (GW). Liquid chromatography coupled with trapped ion mobility spectrometry-quadrupole-time-of-flight mass spectrometry-based lipidomics was used to determine the lipid profile in the mouse kidneys. Histological and biochemical analyses showed that the mice injected with glyoxylate exhibited crystal precipitation and renal dysfunction. Crystallization decreased significantly in the fenofibrate group, whereas it increased significantly in the GW group. A total of 184 lipids, including fatty acyls, glycerolipids, glycerophospholipids, and sphingolipids differed significantly between the mice in the model and control groups. Peroxisome proliferator-activated receptor alpha activity negatively correlated with glyoxylate-induced kidney stone formation in mice, which may be related to improved fatty acid oxidation, maintenance of ceramide/complex sphingolipids cycle balance, and alleviation of disorder in phospholipid metabolism.  相似文献   
838.
Method of polyolefin surface activation via covalent grafting of polyperoxide nanolayer by free radical mechanism has been presented. The features of such the nanolayer formation under the thermoprocessing conditions, i.e.: formation of 3D crosslinked network in polyperoxide bulk; and its grafting with complete coating of polyolefin surface, -- is considered. The method provides an availability of uniformly placed peroxide groups of one type over the polyolefin surface activated, which may further be utilized for the tailored modification of polymer surfaces using the “grafting to” and “grafting from” techniques in that time when it is necessary.  相似文献   
839.
Raman spectroscopy is widely used for study of lipids and membrane models. A severe limitation of this technique lies in the low Raman cross section requiring high sample concentrations. We report sensitive detection of synthetic 1,2‐dimyristoyl‐3‐trimethylammonium‐propane (DMTAP) lipid employing two Raman techniques with improved sensitivity: drop coating deposition Raman (DCDR) and surface‐enhanced Raman scattering (SERS) spectroscopies. DCDR provided well‐reproducible DMTAP spectra without considerable loss of its solution properties if measured from the ‘coffee ring’ pattern of a drop dried on a SpectRIMTM plate. DMTAP was detected at ~10 μM initial solution concentration, which is about three orders of magnitude lower than that for conventional Raman spectroscopy. Moreover, SERS spectra from dried ring of Ag hydrosol/DMTAP system were obtained down to ~0.3 μM DMTAP concentration, which means that sensitivity of SERS is about five orders of magnitude higher than that of conventional Raman spectroscopy. In contrast to the DCDR technique, good SERS spectra of DMTAP were obtained only from some spots of the ring containing big nanoparticle aggregates, and the structural properties of DMTAP were significantly perturbed by adsorption on the Ag nanoparticles. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
840.
Macromolecularly crowded coacervate is useful in protein delivery for tissue engineering and regenerative medicine. However, coacervate tends to aggregate easily, which impedes their application. Here, this work presents a method to prepare coacervate with enhanced stability. This work assembles phospholipids on the surface of a coacervate to form lipocoacervate (LipCo). The resultant LipCo possesses a discrete spherical structure with a coacervate interior and phospholipid outer shell. The size of LipCo does not change over the four-week observation window, whereas coacervate coalesced into one bulk phase within 30 min. This work uses vascular endothelial growth factor-C (VEGF-C) and fibroblast growth factor-2 (FGF-2) as examples to test LipCo's ability to maintain protein bioactivity. The in vitro lymphangiogenesis assay demonstrates that human dermal lymphatic endothelial cells (LECs) formed increased network of cord in VEGF-C and FGF-2 loaded LipCo group compared to free proteins and proteins loaded in coacervate. Overall, LipCo could serve as a protein delivery vehicle with improved colloidal stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号