首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   7篇
  国内免费   32篇
化学   115篇
综合类   10篇
物理学   1篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   7篇
  2019年   4篇
  2018年   4篇
  2017年   4篇
  2016年   1篇
  2015年   5篇
  2014年   6篇
  2013年   7篇
  2012年   7篇
  2011年   7篇
  2010年   2篇
  2009年   2篇
  2008年   5篇
  2007年   4篇
  2006年   3篇
  2005年   7篇
  2004年   4篇
  2003年   8篇
  2002年   2篇
  2001年   2篇
  1999年   6篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1992年   3篇
  1987年   2篇
  1986年   1篇
排序方式: 共有126条查询结果,搜索用时 140 毫秒
1.
In phosphate buffer-diethylene glycol monobutyl ether(DGBE), the oxidations of ferrocene and 15 derivatives were investigated in the presence of Rhus vernicifera laccase. The results showed that ferrocene and 11 derivatives can be oxidized. The mechanism of Laccase catalyzed oxidation of ferrocene was put forward.  相似文献   
2.
The wood-degrading fungus Trametes multicolor secretes several laccase isoforms when grown on a simple medium containing copper in the millimolar range for stimulating laccase synthesis. The main isoenzyme laccase II was purified to apparent homogeneity from the culture supernatant by using anion-exchange chromatography and gel filtration. Laccase II is a monomeric glycoprotein with a molecular mass of 63 kDa as determined by sodium dodecylsulfate polyacrylamide gel electrophoresis, contains 18% glycosylation, and has a pI of 3.0. It oxidizes a variety of phenolic substrates as well as ferrocyanide and iodide. The pH optimum depends on the substrate employed and shows a bell-shaped pH activity profile with an optimum of 4.0 to 5.0 for the phenolic substrates, while the nonphenolic substrates ferrocyanide and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonate) show a monotonic pH profile with a rate decreasing with increasing pH.  相似文献   
3.
4.
Natural fibers containing components with phenolic hydroxyl groups, such as jute, wool, and silk, can be directly modified by laccase-catalyzed grafting. However, cellulosic fibers like cotton cannot be functionalized in this manner. In this work, we developed a facile two-step method to graft polymers on cotton fabric via laccase catalysis. First, polydopamine (PDA) coating was deposited on the surface of the cotton fabrics via catalysis of laccase/2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) system. Then, the newly formed PDA coating acted as the secondary reaction platform for subsequent laccase-mediated grafting of hydrophobic monomer dodecyl gallate (DG). The oxidation of dopamine (DA) catalyzed with the laccase/TEMPO system was investigated using UV–visible (UV–vis) spectroscopy. The scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) results verified that the PDA was coated on the surface of cotton fibers. Fourier transform infrared (FTIR) spectra indicated that the PDA-coated cotton was successfully grafted with DG (DG-PDA-cotton). According to the weighting method, the grafting percentage was about 1.06%. The hydrophobicity of the DG-PDA-cotton fabrics was greatly improved with a contact angle of 133°. Also, the grafted cotton fabrics show repellency of water-soluble stains like coffee, milk, and tea. This study provides a new strategy for surface modification of cotton by laccase-mediated grafting, which offers the references for the green fabrication of cotton fabrics with improved functionalization.  相似文献   
5.
For the synthesis of a new biologically functional polymer from a natural resource by an environment‐friendly method, the laccase‐catalyzed polymerization of a lignin‐based macromonomer, lignocatechol, was carried out for the first time in ethanol–phosphate buffer solvent system to give crosslinked polymers in good yields. Lignocatechol was prepared by the phase separation system of lignin and catechol in aqueous sulfuric acid. The copolymerization was also performed with urushiol to afford the corresponding copolymers in high yields. The polymerization mechanism was estimated by the IR and pyrolysis GC‐MS measurements, suggesting that the polymerization proceeded mainly at the catechol ring through a quinone radical intermediate. The thermal properties were measured by the DSC, TG, and TMA analyses, indicating that the polymers had high thermal stabilities because of the crosslinked structures. In addition, it was found that the resulting polymers had the affinity of bovine serum albumin (BSA) and glucoamylase. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 824–832, 2009  相似文献   
6.
A laccase that has been isolated previously (1) from the Basidiomycete,Rigidoporus lignosus, a white rot fungus of rubber tree, was used in the present study. When a thioglycolic lignin (TGL) was incubated in the presence of this enzyme, pronounced changes in the UV spectrum and size distribution of the substrate were observed. Sephadex gel filtration indicated that two types of reactions occurred: (1) A degradation of the polymer, as evidenced by the production of low-molecular-weight material; and (2) a condensation of some of the TGL molecules, as revealed by an increase in the fractions of higher molecular weight.  相似文献   
7.
曾涵  杨阳  赵淑贤 《无机化学学报》2015,31(12):2305-2314
以合成的4-巯基苯甲酸功能化纳米金粒子和聚乙烯基吡啶包覆纳米金粒子分别作为固酶载体,制备了2种新型固酶电极,在此基础上组装了2种酶燃料电池。采用电化学方法结合紫外可见分光光度法、透射电镜技术等手段研究了固酶载体的形貌,酶-载体间相互作用对电极表面固定酶分子的光谱学性质,酶-电极间直接电子迁移能力和催化底物反应性能的影响,进一步评估和比较了两种酶燃料电池的能量输出性能。实验结果表明:4-巯基苯甲酸功能化纳米金粒子固酶基电极可以实现酶-电极间的直接电子迁移而且对葡萄糖和氧气具有良好的催化性能(催化反应起始电位分别为-0.03和0.96 V,底物转化频率分别是1.3和0.5 s-1),其催化性能的重现性、长期使用性能、酸碱耐受性和热稳定性良好,随着自组装固酶层数的增加,催化性能随之增强直至达到极限催化电流;电池性能测试结果表明4-巯基苯甲酸功能化纳米金粒子固酶基燃料电池的开路电压为0.88 V,最大输出能量密度:864.0 μW·cm-2,长期使用性能优异(储存3 周后仍可达到最佳能量输出的80%以上)。  相似文献   
8.
This communication reports the selective bioconversions of substituted toluenes to substituted benzaldehydes without the help of any mediators by purified laccase of indigenous fungal strain Fomes durissimus microbial type culture collection (MTCC)-1173. Molecular mass of laccase purified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was found to be 74.86 kDa (~75 kDa). By using this purified laccase, selective bioconversions of 3-nitrotoluene to 3-nitrobenzaldehyde, 2-fluorotoluene to 2-fluorobenzaldehyde, 4-fluorotoluene to 4-fluorobenzaldehyde, 2-chlorotoluene to 2-chlorobenzaldehyde and 4-chlorotoluene to 4-chlorobenzaldehyde have been done without the help of mediator molecules within 1–2 hrs at room temperature and pressure with high yields (>90%). All the above bioconversions are good examples of green chemistry.  相似文献   
9.
One-dimensional Ni/Au/PPy-COOH nanowires with multiple segments were synthesized in this study. Smooth surfaces and magnetic properties of nanowires were investigated by scanning transmission electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDX), and Electron Spin Resonance (ESR) techniques. The nanowires were used to modify the screen-printed electrode surface and as a micro-environment for Trametes versicolor laccase. The ability of this enzyme biosensor to detect dopamine change in human biological samples was demonstrated by a wide linear range (0.01–50 μM) and a low LOD (2.265 nM). In addition, the biosensor exhibited excellent selectivity allowing the detection of dopamine in the presence of ascorbic acid, uric acid, L-Cys, serotonin, and glucose, with high sensitivity of reduction currents obtained at −0.2 V (vs. Ag/AgCl). The proposed biosensor allowed the detection of dopamine in commercial serum and artificial urine with recovery values close to 100 %. It also demonstrated reproducibility, reusability, and long-term storage stability. The sensitivity, Kmapp, and Imax values of the biosensor were determined as 2.05 μM and 1.03 μA, respectively. The LAC-Ni/Au/PPy-COOH/NAF/SPE biosensor is a reliable design for detecting dopamine with a wide linear range.  相似文献   
10.
Dimethoxyphenol was a widely used substrate in determination of laccases activity. It was surprised, however, that the products of it had not been completely determined until now. Studies were thus conducted on Rhus laccase (RL) and immobilized Rhus laccase (IRL)-catalyzed oxidation of 2,6-dimethoxyphenol (DMP) in water-organic solvent systems. Only one product, 3,3′,5,5′- tetramethoxy-1 ,1′-biphenyl-4,4′-diol (TMBP), was produced by RL catalysis, and it was thoroughly characterized by FT-IR, NMR and GC-MS, etc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号