首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6026篇
  免费   746篇
  国内免费   418篇
化学   6225篇
晶体学   29篇
力学   18篇
综合类   103篇
数学   45篇
物理学   770篇
  2024年   12篇
  2023年   99篇
  2022年   173篇
  2021年   361篇
  2020年   357篇
  2019年   211篇
  2018年   190篇
  2017年   204篇
  2016年   332篇
  2015年   321篇
  2014年   341篇
  2013年   427篇
  2012年   463篇
  2011年   364篇
  2010年   350篇
  2009年   415篇
  2008年   338篇
  2007年   335篇
  2006年   309篇
  2005年   300篇
  2004年   265篇
  2003年   200篇
  2002年   125篇
  2001年   107篇
  2000年   100篇
  1999年   107篇
  1998年   76篇
  1997年   67篇
  1996年   47篇
  1995年   38篇
  1994年   29篇
  1993年   26篇
  1992年   26篇
  1991年   20篇
  1990年   11篇
  1989年   8篇
  1988年   9篇
  1987年   2篇
  1986年   10篇
  1985年   4篇
  1984年   5篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1978年   1篇
排序方式: 共有7190条查询结果,搜索用时 15 毫秒
991.
992.
For applications in synthetic biology, for example, the bottom‐up assembly of biomolecular nanofactories, modules of specific and controllable functionalities are essential. Of fundamental importance in such systems are energizing modules, which are able to establish an electrochemical gradient across a vesicular membrane as an energy source for powering other modules. Light‐driven proton pumps like proteorhodopsin (PR) are excellent candidates for efficient energy conversion. We have extended the versatility of PR by implementing an on/off switch based on reversible chemical modification of a site‐specifically introduced cysteine residue. The position of this cysteine residue in PR was identified by structure‐based cysteine mutagenesis combined with a proton‐pumping assay using E. coli cells overexpressing PR and PR proteoliposomes. The identified PR mutant represents the first light‐driven proton pump that can be chemically switched on/off depending on the requirements of the molecular system.  相似文献   
993.
Proteins from the GASA/snakin superfamily are common in plant proteomes and have diverse functions, including hormonal crosstalk, development, and defense. One 63‐residue member of this family, snakin‐1, an antimicrobial protein from potatoes, has previously been chemically synthesized in a fully active form. Herein the 1.5 Å structure of snakin‐1, determined by a novel combination of racemic protein crystallization and radiation‐damage‐induced phasing (RIP), is reported. Racemic crystals of snakin‐1 and quasi‐racemic crystals incorporating an unnatural 4‐iodophenylalanine residue were prepared from chemically synthesized d ‐ and l ‐proteins. Breakage of the C?I bonds in the quasi‐racemic crystals facilitated structure determination by RIP. The crystal structure reveals a unique protein fold with six disulfide crosslinks, presenting a distinct electrostatic surface that may target the protein to microbial cell surfaces.  相似文献   
994.
The acetamidomethyl (Acm) moiety is a widely used cysteine protecting group for the chemical synthesis and semisynthesis of peptide and proteins. However, its removal is not straightforward and requires harsh reaction conditions and additional purification steps before and after the removal step, which extends the synthetic process and reduces the overall yield. To overcome these shortcomings, a method for rapid and efficient Acm removal using PdII complexes in aqueous medium is reported. We show, for the first time, the assembly of three peptide fragments in a one‐pot fashion by native chemical ligation where the Acm moiety was used to protect the N‐terminal Cys of the middle fragment. Importantly, an efficient synthesis of the ubiquitin‐like protein UBL‐5, which contains two native Cys residues, was accomplished through the one‐pot operation of three key steps, namely ligation, desulfurization, and Acm deprotection, highlighting the great utility of the new approach in protein synthesis.  相似文献   
995.
996.
Previous retrosynthetic and isotope‐labeling studies have indicated that biosynthesis of the iron guanylylpyridinol (FeGP) cofactor of [Fe]‐hydrogenase requires a methyltransferase. This hypothetical enzyme covalently attaches the methyl group at the 3‐position of the pyridinol ring. We describe the identification of HcgC, a gene product of the hcgA‐G cluster responsible for FeGP cofactor biosynthesis. It acts as an S‐adenosylmethionine (SAM)‐dependent methyltransferase, based on the crystal structures of HcgC and the HcgC/SAM and HcgC/S‐adenosylhomocysteine (SAH) complexes. The pyridinol substrate, 6‐carboxymethyl‐5‐methyl‐4‐hydroxy‐2‐pyridinol, was predicted based on properties of the conserved binding pocket and substrate docking simulations. For verification, the assumed substrate was synthesized and used in a kinetic assay. Mass spectrometry and NMR analysis revealed 6‐carboxymethyl‐3,5‐dimethyl‐4‐hydroxy‐2‐pyridinol as the reaction product, which confirmed the function of HcgC.  相似文献   
997.
A versatile method is described to engineer precisely defined protein/peptide–polymer therapeutics by a modular approach that consists of three steps: 1) fusion of a protein/peptide of interest with an elastin‐like polypeptide that enables facile purification and high yields; 2) installation of a clickable group at the C terminus of the recombinant protein/peptide with almost complete conversion by enzyme‐mediated ligation; and 3) attachment of a polymer by a click reaction with near‐quantitative conversion. We demonstrate that this modular approach is applicable to various protein/peptide drugs and used it to conjugate them to structurally diverse water‐soluble polymers that prolong the plasma circulation duration of these proteins. The protein/peptide–polymer conjugates exhibited significantly improved pharmacokinetics and therapeutic effects over the native protein/peptide upon administration to mice. The studies reported here provide a facile method for the synthesis of protein/peptide–polymer conjugates for therapeutic use and other applications.  相似文献   
998.
To study the behavior of MDM2‐p53 inhibitors in a disease‐relevant cellular model, we have developed and validated a set of bioorthogonal probes that can be fluorescently labeled in cells and used in high‐content screening assays. By using automated image analysis with single‐cell resolution, we could visualize the intracellular target binding of compounds by co‐localization and quantify target upregulation upon MDM2‐p53 inhibition in an osteosarcoma model. Additionally, we developed a high‐throughput assay to quantify target occupancy of non‐tagged MDM2‐p53 inhibitors by competition and to identify novel chemical matter. This approach could be expanded to other targets for lead discovery applications.  相似文献   
999.
Protein assemblies with high symmetry are widely distributed in nature. Most efforts so far have focused on repurposing these protein assemblies, a strategy that is ultimately limited by the structures available. To overcome this limitation, methods for fabricating novel self‐assembling proteins have received intensive interest. Herein, by reengineering the key subunit interfaces of native 24‐mer protein cage with octahedral symmetry through amino acid residues insertion, we fabricated a 16‐mer lenticular nanocage whose structure is unique among all known protein cages. This newly non‐native protein can be used for encapsulation of bioactive compounds and exhibits high uptake efficiency by cancer cells. More importantly, the above strategy could be applied to other naturally occurring protein assemblies with high symmetry, leading to the generation of new proteins with unexplored functions.  相似文献   
1000.
Monitoring the interaction of biomolecules is important, and the use of energy transfer is a principal technique in elucidating nanoscale interactions. Lanthanide compounds are promising luminescent probes for biological samples as their emission is longer‐lived than any native autofluorescence. Polyoxometalates (POMs) are interesting structural motifs to incorporate lanthanides, offering low toxicity and a size pertinent for biological applications. Here, we employ iso‐structured POMs containing either terbium or europium and assess their interaction with serum albumin by sensitisation of a fluorescent tag on the protein via LRET (luminescence resonance energy transfer) by exciting the lanthanide. Time‐resolved measurements showed energy transfer with an efficiency of over 90 % for the POM–protein systems. The Tb–POM results were relatively straightforward, while those with the iso‐structured Eu–POM were complicated by the effect of protein shielding from the aqueous environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号