首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1017篇
  免费   199篇
  国内免费   70篇
化学   1089篇
晶体学   10篇
力学   48篇
综合类   4篇
数学   11篇
物理学   124篇
  2024年   2篇
  2023年   6篇
  2022年   15篇
  2021年   20篇
  2020年   55篇
  2019年   41篇
  2018年   24篇
  2017年   34篇
  2016年   55篇
  2015年   68篇
  2014年   74篇
  2013年   125篇
  2012年   72篇
  2011年   70篇
  2010年   59篇
  2009年   65篇
  2008年   72篇
  2007年   82篇
  2006年   86篇
  2005年   51篇
  2004年   69篇
  2003年   42篇
  2002年   12篇
  2001年   9篇
  2000年   9篇
  1999年   9篇
  1998年   7篇
  1997年   11篇
  1996年   6篇
  1995年   5篇
  1994年   4篇
  1993年   11篇
  1992年   3篇
  1991年   3篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1980年   1篇
  1969年   1篇
排序方式: 共有1286条查询结果,搜索用时 15 毫秒
71.
Peptides, the fundamental building units of biological systems, are chiral in molecular scale as well as in spatial conformation. Shells are exquisite examples of well‐defined chiral structures produced by natural biomineralization. However, the fundamental mechanism of chirality expressed in biological organisms remains unclear. Here, we present a system that mimics natural biomineralization and produces enantiopure chiral inorganic materials with controllable helicity. By tuning the hydrophilicity of the amphiphilic peptides, the chiral morphologies and mesostructures can be changed. With decreasing hydrophilicity of the amphiphilic peptides, we observed that the nanostructures changed from twisted nanofibers with a hexagonal mesostructure to twisted nanoribbons with a lamellar mesostructure, and the extent of the helicity decreased. Defining the mechanism of chiral inorganic materials formed from peptides by noncovalent interactions can improve strategies toward the bottom‐up synthesis of nanomaterials as well as in the field of bioengineering.  相似文献   
72.
In α‐peptides, the 8/10 helix is theoretically predicted to be energetically unstable and has not been experimentally observed so far. Based on our earlier studies on ‘helical induction’ and ‘hybrid helices’, we have adopted the ‘end‐capping’ strategy to induce the 8/10 helix in α‐peptides by using short α/β‐peptides. Thus, α‐peptides containing a regular string of α‐amino acids with alternating chirality were end capped by α/β‐peptides with 11/9‐helical motifs at the termini. Extensive NMR spectroscopy studies of these peptides revealed the presence of a hitherto unknown 8/10‐helical pattern; the H‐bonds in the shorter pseudorings were rather weak. The approach of using short helical motifs to induce new mixed helices in α‐peptides could provide avenues for more versatile design strategies.  相似文献   
73.
A series of quinoxaline‐fused [7]carbohelicenes (HeQu derivatives) was designed and synthesized to evaluate their structural and photophysical properties in the crystal state. The quinoxaline units were expected to enhance the light‐emitting properties and to control the packing structures in the crystal. The electrochemical and spectroscopic properties and excited‐state dynamics of these compounds were investigated in detail. The first oxidation potentials of HeQu derivatives are approximately the same as that of unsubstituted reference [7]carbohelicene (Heli), whereas their first reduction potentials are shifted to the positive by about 0.7 V. The steady‐state absorption, fluorescence, and circular dichroism spectra also became redshifted compared to those of Heli. The molecular orbitals and energy levels of the HOMO and LUMO states, calculated by DFT methods, support these trends. Moreover, the absolute fluorescence quantum yields of HeQu derivatives are about four times larger than that of Heli. The structural properties of the aggregated states were analyzed by single‐crystal analysis. Introduction of appropriate substituents (i.e., 4‐methoxyphenyl) in the HeQu unit enabled the construction of one‐dimensional helical columns of racemic HeQu derivatives in the crystal state. Helix formation is based on intracolumn π‐stacking between two neighboring [7]carbohelicenes and intercolumn CH ??? N interaction between a nitrogen atom of a quinoxaline unit and a hydrogen atom of a helicene unit. The time‐resolved fluorescence spectra of single crystals clearly showed an excimerlike delocalized excited state owing to the short distance between neighboring [7]carbohelicene units.  相似文献   
74.
A theoretical study of Li90P90, which possesses a circular double‐helix structure that resembles the Watson–Crick DNA structure, is reported. This is a new bonding motif in inorganic chemistry. The calculations show that the molecule might become synthesized and that it could be a model for other inorganic species which possess a double‐helix structure.  相似文献   
75.
Post‐polymerization C? H activation of poly(quinoxaline‐2,3‐diyl)‐based helically chiral phosphine ligands (PQXphos) with palladium(II) acetate afforded chiral phosphapalladacycles quantitatively. In situ generated palladacycles exhibited enantioselectivities up to 94 % ee in the palladium‐catalyzed asymmetric ring‐opening arylation of 1,4‐epoxy‐1,4‐dihydronaphthalenes with arylboronic acids.  相似文献   
76.
A peptide model is a physical system containing a CONH group, the simplest being HCONHCH3, N‐methylformamide (NMF). We have discovered that NMF and N‐methylacetamide (NMA), which form hydrogen‐bonded oligomers in thin films on a planar AgX fiber, display infrared (IR) spectra with peaks like those of polypeptide helices. Structures can be assigned by their amide I maxima near 1672 (310), 1655 (310), 1653 (α), 1655 (π), and 1635 cm?1 (π), which are the first IR data for the π‐helix. Sharp peaks are an outcome of immobilization of polar species on the polar surface of silver halides. We report the first use of expanded thin‐film IR spectroscopy, in which plots of every spectrum over the amide I–II range show pauses or slow stages in the increase or decrease of absorption. These are identified as static phases followed by dynamic phases, with the incremental gain or loss of a helix turn. A general theory can be stated for such processes. Density functional calculations show that the NMA α‐helix pentamer (crystal structure geometry) is transformed into a π‐helix‐like form. For the first time, an entire sequence (310‐helix, α‐helix, π‐helix, quasiplanar species) of spectra has been recorded for NMA.  相似文献   
77.
采用水热法合成了2个化合物{[Cu2(Hpimdc)(4,4′-bpy)]·H2O}n(1)和[Mn3(pimdc)2·6H2O]n(2)(H3pimdc=2-丙基-4,5-咪唑二甲酸,4,4′-bpy=4,4′-联吡啶),并对2个化合物进行了红外、元素分析、晶体结构和热稳定性分析。晶体结构分析发现化合物1之中的H3pimdc和4,4′-bpy交替与铜(Ⅰ)配位形成一维链线性铜(Ⅰ)配合物。沿a轴和(100)面去观察,2个一维链分子通过游离水连接而形成1个"U"型拓扑结构。而化合物2通过2-丙基-4,5-咪唑二甲酸链与锰(Ⅱ)连接为三维的网状结构。沿b轴方向,三维结构中存在交替的左/右手螺旋状二维结构。  相似文献   
78.
((?)‐Menthyl (S)‐6′‐acrylyl‐2′‐methyloxy‐1,1′‐binaphthalene‐2‐carboxylate ( 3 ) was synthesized and anionically polymerized using n‐BuLi as an initiator in toluene. The monomer 3 was levorotatory and had an [α]D25 value of ?72.4, but its corresponding polymer poly‐ 3 was dextrorotatory and showed an [α]D25 value of +162.0. Poly‐ 3 was confirmed to exist in the form of one‐handed helical structure in solution by means of comparing the specific optical rotation and the CD spectra with that of 3 and the model compounds such as (?)‐menthyl (S)‐6′‐propionyl‐2′‐methyloxy‐1,1′‐binaphthalene‐2‐carboxylate 2b and (?)‐menthyl (S)‐6′‐heptanoyl‐2′‐methyloxy‐1,1′‐binaphthalene‐2‐carboxylate 2c . This conclusion was also confirmed by the fact that the g‐value of poly‐ 3 is about 11 times of that of monomer 3 .  相似文献   
79.
π-Stacked polymers, which consist of layered π-electron systems in a polymer, can be expected to be used in molecular electronic devices. However, the construction of a stable π-stacked structure in a polymer is considerably challenging because it requires sophisticated designs and precise synthetic methods. Herein, we present a novel π-stacked architecture based on poly(quinolylene-2,3-methylene) bearing alanine derivatives as the side chain, obtained through the living cyclo-copolymerization of an o-allenylaryl isocyanide. In the resulting polymer, the neighboring quinoline rings of the main chain form a layered structure with π–π interactions, which is stabilized by intramolecular hydrogen bonds. The vicinal quinoline units form two independent helices and the whole molecule is a twisted-tape structure. This structure is established on the basis of UV/CD spectra, theoretical calculations, and atomic-force microscopy.  相似文献   
80.
We report the synthesis of new helical polymeric structures having alternating cis and trans double bonds and chiral amino acid side chains by metathesis cyclopolymerization. The polymer helicity, which is generated by the interaction between fluorenylmethyloxycarbonyl (Fmoc) groups in the side chains, is dramatically affected by solvents. A thorough experimental and theoretical analysis including nuclear magnetic resonance, atomic force microscopy, and density functional theory and molecular mechanics calculations suggests that the helicity of both backbone and side chains are determined by anti-syn rotation of the carbamate groups and by the different interactions of the Fmoc groups with solvents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号