首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3419篇
  免费   794篇
  国内免费   379篇
化学   4030篇
晶体学   13篇
力学   12篇
综合类   26篇
数学   10篇
物理学   501篇
  2024年   5篇
  2023年   51篇
  2022年   69篇
  2021年   155篇
  2020年   224篇
  2019年   166篇
  2018年   144篇
  2017年   148篇
  2016年   243篇
  2015年   276篇
  2014年   330篇
  2013年   427篇
  2012年   326篇
  2011年   319篇
  2010年   239篇
  2009年   235篇
  2008年   231篇
  2007年   177篇
  2006年   173篇
  2005年   138篇
  2004年   98篇
  2003年   95篇
  2002年   44篇
  2001年   37篇
  2000年   31篇
  1999年   15篇
  1998年   21篇
  1997年   23篇
  1996年   32篇
  1995年   28篇
  1994年   19篇
  1993年   14篇
  1992年   14篇
  1991年   14篇
  1990年   8篇
  1989年   6篇
  1988年   8篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1979年   2篇
排序方式: 共有4592条查询结果,搜索用时 31 毫秒
131.
Plasmonic nanostructures with large absorption areas under resonant excitation have been utilized extensively in photon-assisted applications. In this work, dodecahedral Au nanobowls were first prepared by an easy and template-free method only through the introduction of H2PtCl6 and I during the growth procedure. The Au nanobowls show electron-field enhancement due to the high curvature of the bowl edge, the open region, and dodecahedral morphology. Au/Pt nanobowls, which couple plasmonic Au and catalytic Pt, were then constructed as plasmonic electrocatalysts for methanol oxidation. The mass activity reached 497.6 mA mg−1 under visible-light illumination, which is 1.9 times that measured in the dark. Simultaneously, the electrocatalytic stability is also greatly improved under light excitation. The enhanced properties of the plasmonic Au/Pt electrocatalysts are ascribed to the synergistic effect of the plasmon-enhanced photothermal and hot-carrier effects on the basis of experimental investigations. This work thus offers an effective methodology to construct efficient plasmonic electrocatalysts for fuel cells.  相似文献   
132.
Gold nanoparticles have unique and excellent medical and nonmedical properties and application compared with other metallic nanoparticles. Recently, they have been used for the prevention, control, and treatment of bacterial and fungal diseases. In the recent study, fresh and clean leaves of Allium noeanum Reut. ex Regel leaves have been used for the synthesis of gold nanoparticles. Also, we evaluated the cytotoxicity, antioxidant, and antibacterial properties of HAuCl4, A. noeanum, and the synthesized nanoparticles (Au NPs). These nanoparticles were analyzed by FT‐IR, UV, XRD, EDS, FE‐SEM, and TEM tests. FTIR results offered antioxidant compounds in the plant were the sources of reducing power, reducing gold ions to Au NPs. In TEM images revealed an average diameter of 10‐30 nm. At the beginning of biological experiments, DPPH free radical scavenging test was carried out to examine the antioxidant property. Also, in the bacterial part of this study, the concentration of HAuCl4, A. noeanum, and AuNPs with minimum dilution and no turbidity was considered MIC. To determine MBC, 60 μL of MIC and three preceding chambers were cultured on Muller Hinton Agar. The minimum concentration with no bacterial growth was considered MBC. Au NPs revealed excellent antioxidant potential against DPPH, non‐toxicity property against human umbilical vein endothelial cells, and antibacterial activities against Streptococcus pneumonia, Bacillus subtilis, Staphylococcus aureus, Staphylococcus saprophyticus, Salmonella typhimurium, Pseudomonas aeruginosa, Shigella flexneri, and Escherichia coli O157:H7. These findings show that the inclusion of A. noeanum extract improves the solubility of Au NPs, which led to a notable enhancement in the antioxidant and antibacterial effects.  相似文献   
133.
Janus gold nanostar–mesoporous silica nanoparticle ( AuNSt–MSNP ) nanodevices able to release an entrapped payload upon irradiation with near infrared (NIR) light were prepared and characterized. The AuNSt surface was functionalized with a thiolated photolabile molecule ( 5 ), whereas the mesoporous silica face was loaded with a model drug (doxorubicin) and capped with proton-responsive benzimidazole-β-cyclodextrin supramolecular gatekeepers ( N 1 ). Upon irradiation with NIR-light, the photolabile compound 5 photodissociated, resulting in the formation of succinic acid, which induced the opening of the gatekeeper and cargo delivery. In the overall mechanism, the gold surface acts as a photochemical transducer capable of transforming the NIR-light input into a chemical messenger (succinic acid) that opens the supramolecular nanovalve. The prepared hybrid nanoparticles were non-cytotoxic to HeLa cells, until they were irradiated with a NIR laser, which led to intracellular doxorubicin release and hyperthermia. This induced a remarkable reduction in HeLa cells viability.  相似文献   
134.
The mono- and di-chloroform solvates of [Au2(μ-1,2-bis(diphenylarsino)ethane)2](AsF6)2 undergo single-crystal-to-single-crystal transformations that result in gain (over 12 hours) or slow loss (over five years) of only one chloroform molecule. The change in solvation results in changes in the structure and luminescence of the digold cation. The cation consists of a pair of slightly bent As-Au-As units that are connected through the two bridging dpae ligands and by aurophilic interactions with Au⋅⋅⋅Au contacts of 3.05152(15) Å in the disolvate or 2.9570(5) Å in the monosolvate.  相似文献   
135.
Nonspecific high‐energy radiation for treatment of metastatic ovarian cancer is limited by damage to healthy organs, which can be mitigated by the use of radiosensitizers and image‐guided radiotherapy. Gold (Au) and tantalum oxide (TaOx) nanoparticles (NPs), by virtue of their high atomic numbers, find utility in the design of bimetallic NP systems capable of high‐contrast computed tomography (CT) imaging as well as a potential radiosensitizing effect. These two radio‐dense metals are integrated into dendritic mesoporous silica NPs (dMSNs) with radial porous channels for high surface‐area loading of therapeutic agents. This approach results in stable, monodispersed dMSNs with a uniform distribution of Au on the surface and TaOx in the core that exhibits CT attenuation up to seven times greater than iodine or monometallic dMSNs without either TaOx or Au. Tumor targeting is assessed in a metastatic ovarian cancer mouse model. Ex vivo micro‐CT imaging of collected tumors shows that these NPs not only accumulate at tumor sites but also penetrate inside tumor tissues. This study demonstrates that after intraperitoneal administration, rationally designed bimetallic NPs can simultaneously serve as targeted contrast agents for imaging tumors and to enhance radiation therapy in metastatic ovarian cancer.  相似文献   
136.
Nanoparticles have an immense importance in various fields, such as medicine, catalysis, and various technological applications. Nanoparticles exhibit a significant depression in melting point as their size goes below ≈10 nm. However, nanoparticles are frequently used in high temperature applications such as catalysis where temperatures often exceed several 100 degrees which makes it interesting to study not only the melting temperature depression, but also how the melting progresses through the particle. Using high‐resolution transmission electron microscopy, the melting process of gold nanoparticles in the size range of 2–20 nm Au nanoparticles combined with molecular dynamics studies is investigated. A linear dependence of the melting temperature on the inverse particle size is confirmed; electron microscopy imaging reveals that the particles start melting at the surface and the liquid shell formed then rapidly expands to the particle core.  相似文献   
137.
138.
We report an ecofriendly synthetic approach for the fabrication of biogenic gold nanoparticles (AuNPs) using electron-rich sea cucumber extract as a bio-reductant and stabilizing agent in reducing gold cations into AuNPs at the optimal conditions. The produced AuNPs are spherical in shape with an average particle size of 11 ± 1.5 nm in transmission electron microscopy (TEM) and exhibited a crystal structure of face-centered cubic in X-ray diffraction (XRD) analyses. Our results indicated that bioinspired AuNPs demonstrate superior catalytic activity in the safe and facile one-pot synthesis of polyhydroquinoline derivatives under solvent-free reaction conditions. This green route encompasses multiple benefits including highly recyclable bioinspired catalyst (5 cycles), short reaction times, convenient workout, high to excellent product yields (82%–97%), and nonhazardous conditions.  相似文献   
139.
Efficient OLED devices have been fabricated using organometallic complexes of platinum group metals. Still, the high material cost and low stability represent central challenges for their application in commercial display technologies. Based on its innate stability, gold(III) complexes are emerging as promising candidates for high-performance OLEDs. Here, a series of alkynyl-, N-heterocyclic carbene (NHC)- and aryl-gold(III) complexes stabilized by a κ3-(N^C^C) template have been prepared and their photophysical properties have been characterized in detail. These compounds exhibit good photoluminescence quantum efficiency (ηPL) of up to 33 %. The PL emission can be tuned from sky-blue to yellowish green colors by variations on both the ancillary ligands as well as on the pincer template. Further, solution-processable OLED devices based on some of these complexes display remarkable emissive properties (ηCE 46.6 cd.A−1 and ηext 14.0 %), thus showcasing the potential of these motifs for the low-cost fabrication of display and illumination technologies.  相似文献   
140.
The nature of cyclopropyl gold(I) carbene-type intermediates has been reexamined as part of a mechanistic study on the formation of cis- or trans-fused bicyclo[5.1.0]octanes in a gold(I)-catalyzed cascade reaction. Benchmark of DFT methods together with QTAIM theory and NBO analysis confirms the formation of distinct intermediates with carbenic or carbocationic structures in the cycloisomerizations of enynes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号