首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   681篇
  免费   71篇
  国内免费   176篇
化学   802篇
晶体学   11篇
力学   5篇
综合类   4篇
数学   1篇
物理学   105篇
  2023年   7篇
  2022年   8篇
  2021年   18篇
  2020年   34篇
  2019年   32篇
  2018年   26篇
  2017年   38篇
  2016年   48篇
  2015年   39篇
  2014年   44篇
  2013年   83篇
  2012年   58篇
  2011年   66篇
  2010年   63篇
  2009年   60篇
  2008年   47篇
  2007年   54篇
  2006年   30篇
  2005年   43篇
  2004年   35篇
  2003年   19篇
  2002年   13篇
  2001年   6篇
  2000年   12篇
  1999年   6篇
  1998年   4篇
  1997年   6篇
  1996年   8篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   5篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
排序方式: 共有928条查询结果,搜索用时 314 毫秒
41.
In this work, microwave distillation assisted by Fe2O3 magnetic microspheres (FMMS) and headspace single‐drop microextraction were combined, and developed for determination of essential oil compounds in dried Zanthoxylum bungeanum Maxim (ZBM). The FMMS were used as microwave absorption solid medium for dry distillation of dried ZBM. Using the proposed method, isolation, extraction, and concentration of essential oil compounds can be carried out in a single step. The experimental parameters including extraction solvent, solvent volume, microwave power, irradiation time, and the amount of added FMMS, were studied. The optimal analytical conditions were: 2.0 μL decane as the extraction solvent, microwave power of 300 W, irradiation time of 2 min, and the addition of 0.1 g FMMS to ZBM. The method precision was from 4 to 10%. A total of 52 compounds were identified by the proposed method. The conventional steam distillation method was also used for the analysis of essential oil in dried ZBM and only 31 compounds were identified by steam distillation method. It was found that the proposed method is a simple, rapid, reliable, and solvent‐free technique for the determination of volatile compounds in Chinese herbs.  相似文献   
42.
Hierarchical graphene oxide (GO)‐TiO2 composite microspheres with different GO/TiO2 mass ratios were successfully prepared by mixing GO and TiO2 microspheres under ultrasonic conditions. Ultrasonication helped the GO and TiO2 microsphere to uniformly mix on the microscale. The results showed that the GO‐TiO2 composites that were prepared by ultrasonic mixing exhibited significantly higher hydrogen‐evolution rates than those that were synthesized by simple mechanical grinding, owing to synergetic effects, including enhanced light absorption and scattering, as well as improved interfacial charge transfer because of the excellent contact between the GO sheets and TiO2 microspheres. In addition, GO‐TiO2‐3 (3 wt. % GO) showed the highest hydrogen‐generation rate (305.6 μmol h?), which was about 13 and 3.3‐times higher than those of TiO2 microsphere and GO‐P25 (with 3 wt. % GO), respectively. Finally, a tentative mechanism for hydrogen production is proposed and supported by photoluminescence and transient photocurrent measurements. This work highlights the potential applications of GO‐TiO2 composite microspheres in the field of clean‐energy production.  相似文献   
43.
Antibodies are commonly used as recognition elements in immunoassays because of their high specificity and affinity, and have seen extensive use in competitive assays for the detection of small molecules. However, these complex molecules require production either in animals or by mammalian cell cultures, and are not easily tailored through genetic manipulation. Single chain antibodies (scFv), recombinantly expressed molecules consisting of only the antibody's binding region joined via a linking peptide, can provide an alternative to intact antibodies. We describe the characterization of a new monoclonal antibody (mAb), 2G5B5, able to detect the small molecule explosive 2,4,6-trinitrotoluene (TNT) and the scFv derived from its variable regions. The mAb and scFv were tested by surface plasmon resonance to determine their affinity for an immobilized TNT surrogate; dissociation constants were determined to be 1.5 × 10−13 M and 4.8 × 10−10 M respectively. Circular dichroism was used to determine their melting temperatures. The mAb is more stable melting at ∼75 °C while the scFv melts at ∼65 °C. The recognition elements were incorporated into a competitive assay format using a bead-based multiplexing platform to examine their sensitivity and specificity. The scFv was able to detect TNT ∼10-fold more sensitively than the mAb in this assay format, allowing detection of TNT concentrations down to at least 1 μg L−1. The 2G5B gave similar detection limits to a commercial anti-TNT mAb, but was less specific, recognizing 1,3,5-trinitrobenzene (TNB) equally well as TNT.  相似文献   
44.
The salt resistance, temperature resistance, and shear stability of a cross-linked polyacrylamide microsphere system are studied by microfiltration, light diffraction analysis, and optical microscopy. The results show that other conditions being equal, the particle diameter of cross-linked polyacrylamide microspheres decreases with increased NaCl concentration. When NaCl concentration is lower than 10,000 mg/L, its effect on the plugging performance of a cross-linked polyacrylamide microsphere system in regard to the nuclear pore membrane is weak in comparison with a linked polymer solution, but the former system has better salt tolerance. Particle diameter decreases with increased swelling temperature. When the swelling temperature is below 90°C, its effect on the plugging performance of the cross-linked polyacrylamide microsphere system in regard to nuclear pore membrane is weak in comparison with the linked polymer solution, but has better temperature tolerance. Particle size shows little change, with shearing rate being increased, while the shape remains about the same and the effect of shearing on the plugging performance of the cross-linked polyacrylamide microsphere dispersion system in regard to the nuclear pore membrane is weak in comparison with the linked polymer solution, but has better shear stability. The salt tolerance, temperature tolerance, and shear stability of microspheres are associated with a particular cross-linked structure.  相似文献   
45.
The main objective of the present work was to formulate and optimize a microparticulate sustained release drug delivery system of isoniazid by using a novel, alkaline extracted ispaghula husk as a polymer. Isoniazid microspheres of alkaline extracted ispaghula husk were prepared by emulsification internal ionic gelation method. Results of preliminary trials indicated that the polymer concentration, cross-linking agent and stirring speed had a noticeable effect on size and surface morphology. A four-factor three-level Box-Behnken design was employed to study the effect of independent variables on dependent variables. The particle size and entrapment efficiency varied from 30.75 to 61.78 µm and 62.27% to 85.80% respectively, depending on the polymer concentration, concentration of cross-linker and stirring speed. Optimized microspheres batch based on point prediction tool of design software exhibited 83.43% drug entrapment and 51.53 µm particle size with 97.80% and 96.37% validity, respectively at the following conditions: sodium alginate (3.55% w/v), alkaline extracted ispaghula husk (3.60% w/v), cross-linker concentration (7.82% w/v), and stirring speed (1200 rpm). The optimized formulation showed controlled drug release for more than 12 hours. The drug release followed Higuchi kinetics via a non-Fickian diffusion.  相似文献   
46.
CdS nanoparticles were formed on the surface of silica microspheres by the improved layer‐by‐layer self‐assembled technique. High‐resolution electron microscope (HRTEM) image and energy dispersive x‐ray analysis (EDX) confirmed formation of a quasi‐continuous CdS nanoparticles film on the silica microspheres. The results of UV‐vis and fluorescence spectra display that the spherical silica surface has a great effect on the photoluminescence of the loaded CdS nanoparticles. In contrast to the CdS nanoparticles powder, the composite can exhibit the emission ascribed to the band gap transition when the CdS nanoparticles film is relatively thick. This phenomenon is probably due to an enhancement of the crystallinity of CdS nanoparticles induced by the silica spheres.  相似文献   
47.
Mucoadhesive chitosan microspheres of acyclovir were prepared to prolong the gastric residence time using simple emulsification phase separation technique. The particle morphology of drug-loaded formulations was measured by SEM and the particle size distribution was determined using an optical microscope. The release profile of acyclovir from microspheres was examined in simulated gastric fluid (SGF pH 1.2). The particles were found to be discreet and spherical with the maximum particles of an average size (31.62 ± 4.64). The entrapment efficiency was found to be in the range of 40.24 to 67.29%. The concentration of the glutaraldehyde (25%v/v) as a cross-linker 2 ml and drug polymer ratio of 1:2 caused an increase in the entrapment efficiency and the extent of drug release. The optimized chitosan microspheres were found to possess good bioadhesion (79.89 ± 1.01%). The gamma-scintigraphy study showed the gastric residence time of more than 6 hours which revealed that optimized formulation could be a good choice for gastroretentive systems.  相似文献   
48.
The unique features of high porosity, shape selectivity, and multiple active sites make metal–organic frameworks (MOFs) promising as novel stationary phases for high‐performance liquid chromatography (HPLC). However, the wide particle size distribution and irregular shape of conventional MOFs lead to lower column efficiency of such MOF‐packed columns. Herein, the fabrication of monodisperse MOF@SiO2 core–shell microspheres as the stationary phase for HPLC to overcome the above‐mentioned problems is reported. Zeolitic imidazolate framework 8 (ZIF‐8) was used as an example of MOFs due to its permanent porosity, uniform pore size, and exceptional chemical stability. Unique carboxyl‐modified silica spheres were used as the support to grow the ZIF‐8 shell. The fabricated monodisperse ZIF‐8@SiO2 packed columns (5 cm long × 4.6 mm i.d.) show high column efficiency (23 000 plates m?1 for bisphenol A) for the HPLC separation of endocrine‐disrupting chemicals (bisphenol A, β‐estradiol, and p‐(tert‐octyl)phenol) and pesticides (thiamethoxam, hexaflumuron, chlorantraniliprole, and pymetrozine) within 7 min with good relative standard deviations for 11 replicate separations of the analytes (0.01–0.39, 0.65–1.7, 0.70–1.3, and 0.17–0.91 % for retention time, peak area, peak height, and half peak width, respectively). The ZIF‐8@SiO2 microspheres combine the advantages of the good column packing properties of the uniform monodisperse silica microspheres and the separation ability of the ZIF‐8 crystals.  相似文献   
49.
以三羟甲基丙烷三丙烯酸酯(TMPTA)-苯乙烯(St)为单体,偶氮二异丁腈(AIBN)为自由基引发剂,通过在乙醇中的沉淀聚合可制得高交联单分散P(TMPTA-St)聚合物微球.对单体转化率,微球以及可溶性低聚物的产率进行了测试.结果表明,使用10 wt%至60 wt%的交联剂TMPTA进行聚合可获得单分散微球,产率在50%左右.增加TMPTA用量可提高微球产率和单体转化率.增加引发剂AIBN用量对提高微球产率也有促进作用,但同时可溶性低聚物产率也增加.向乙醇中加入水作为反应介质结合适当增加AIBN用量可使单体转化率达到98%,微球产率高于90%.对实验结果进行了解释,对聚合机理进行了讨论.  相似文献   
50.
The design of pore structure is the key factor for the performance of porous carbon spheres.In this wo rk,novel micron-sized colloidal crystal microspheres consisting of fibrous silica(F-SiO_2) nanoparticles are firstly prepared by water-evapo ration-induced self-assembly of F-SiO_2 nanoparticles in the droplets of an inverse emulsion system to be used as sacrificial templates.Acrylonitrile(AN) was infiltrated in the voids of the F-SiO_2 colloidal crystal microspheres,and in-situ induced by ~(60)Co y-ray to polymerize into polyacrylonitrile(PAN).After the PAN-infiltrated F-SiO_2 colloidal crystal microspheres were carbonized and etched with HF solution,novel micron-sized inverse-opal N-doped carbon(IO-NC) microspheres consisting of hollow carbon nanoparticles with a hierarchical macro/meso-porous inner surface were obtained.The IO-NC microspheres have a specific surface area as high as 266.4 m~2/g and a molar ratio of C/N of 5.They have a good dispersibility in water,and show a high adsorption capacity towards rhodamine B(RhB) up to 137.28 mg/(g microsphe re).This work offers a way to obtain novel micron-sized hierarchical macro/meso-porous N-doped carbon microspheres,which opens a new idea to prepare high-performance hierarchical porous carbon materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号