首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   862篇
  免费   78篇
  国内免费   90篇
化学   897篇
晶体学   1篇
力学   18篇
综合类   7篇
数学   14篇
物理学   93篇
  2024年   5篇
  2023年   16篇
  2022年   24篇
  2021年   55篇
  2020年   47篇
  2019年   44篇
  2018年   34篇
  2017年   40篇
  2016年   63篇
  2015年   58篇
  2014年   55篇
  2013年   84篇
  2012年   57篇
  2011年   43篇
  2010年   43篇
  2009年   39篇
  2008年   22篇
  2007年   42篇
  2006年   36篇
  2005年   34篇
  2004年   25篇
  2003年   26篇
  2002年   23篇
  2001年   27篇
  2000年   14篇
  1999年   7篇
  1998年   7篇
  1997年   7篇
  1996年   10篇
  1995年   6篇
  1994年   4篇
  1993年   4篇
  1992年   5篇
  1991年   4篇
  1990年   7篇
  1989年   5篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1981年   3篇
排序方式: 共有1030条查询结果,搜索用时 328 毫秒
31.
Polyamide composed of furan dimer, which is prepared from biomass‐derived organic molecule 2‐furfural, is synthesized. The reaction of 2,2′‐furan dimer 5,5′‐dicarbonyl chloride with several 1,ω‐diamines was carried out with a solution or interfacial polycondensation leading to the corresponding polyamide. Measurement of the melting point was performed resulting to exhibit a higher temperature compared with the related polyamide bearing a single furan ring composed of furan‐2,5‐dicarboxylic acid (FDCA). Thermal analyses (TG–DTA) also indicated higher temperatures of decomposition than those of FDCA‐derived polyamide. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1516–1519  相似文献   
32.
The main objective of this study was to evaluate the sound absorption properties of rigid polyurethane foams (PUFs) produced from crude glycerol (CG) and/or liquefied coffee grounds derived polyol (POL). The lignin content of POL proved to have a major influence on the structure and mechanical properties of the foams. Indeed, the POL content increased the cell size of the foams and their stiffness, which subsequently influenced the sound absorption coefficients. The POL derived foam has slightly higher sound absorption coefficient values at lower frequencies, while the CG foam has higher sound absorption coefficient values at higher frequencies. In turn, the foam prepared using a 50/50 mixture of polyols presents slightly higher sound absorption coefficient values in the medium frequencies range due to a balance between the cell structure and the mechanical properties. The results obtained seem to suggest that the mechanisms involved in sound wave absorption depend on the formulation used to prepare the foams. Additionally higher POL contents improved the thermal stability of PUFs as well as their mechanical properties. From this work the suitability of CG and/or POL derived PUFs as sound absorbing materials has been proven.  相似文献   
33.
34.
Lignin is an important source of synthetic materials because of its abundance in nature, low cost, stable supply, and no competition to the human food supply. Lignin, a cross‐linked phenolic polymer, contains a large number of aromatic groups that can be used as a substitute for petroleum‐based aromatic fine chemicals. However, modification of lignin is necessary for its application in advanced materials due to its chemically inert nature and structural complexity. Polymeric modification of lignin via graft copolymerization represents an important avenue for modification because this method forms stable covalent bond linkages between lignin and synthetic functional polymers. In this review, we discuss recent synthetic strategies toward polymeric modification of lignin using graft copolymerization and the special properties and applications of the produced lignin copolymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3515–3528  相似文献   
35.
A Euler–Lagrangian simulation was employed for a comprehensive parameter study of wood gasification in a fluidized charcoal bed. The parameters that were varied include the initial bed temperature, fuel mass flow rate, inert tar fraction, and kinetic energy losses caused by particle–particle and particle–wall collisions. The results of each parameter variation are compared with a base scenario, previously described in detail in Part I of this study (Gerber & Oevermann, 2014). The results are interpreted by comparing the reactor outlet temperature, averaged particle temperature, overall wood mass, overall charcoal mass, concentrations of several gaseous species, and axial barycenter data for particles obtained with different sets of parameters. The inert tar fraction and fuel mass flow rate are the most sensitive parameter, while the particle–particle and particle–wall contact parameters have only a small impact on the results. Increasing the reactive tar components by 19% almost doubled the amount of reactive tars at the reactor outlet, while decreasing the restitution coefficients of the particle collisions by 0.2 results in higher overall gas production but almost no change in bed height. Herein, our numerical results are discussed in detail while assessing the model restrictions.  相似文献   
36.
以废弃汽车外轮胎热解后的副产物轮胎热解焦(Tyre pyrolysis char,TPC)为原料,利用均匀沉淀法制备以轮胎焦为载体的负载型Ni/TPC催化剂,采用EDX、SEM、XRD、TG、BET手段对催化剂进行了表征与分析,同时使用管式炉测试了Ni/TPC催化剂在秸秆热解燃气重整中的催化性能,并考察了热解温度、保温时间、镍负载量及催化时间对秸秆热解燃气重整效果的影响。研究结果表明,TPC富含焦和金属,Ni/TPC催化剂分散均匀,热稳定性好,比表面积为62 m2/g。催化剂活性测试显示,Ni/TPC催化剂用于作物秸秆热解燃气重整具有很强的催化活性,可显著提高燃气中可燃气体含量;热解温度在750℃、保温时间10 min、30%的Ni负载量时Ni/TPC催化剂的催化效率最高,连续使用850 min后,燃气中的H2含量仍相对提高到50%以上,长时间使用后活性结构由Ni3ZnC0.7转变成FeNi3,催化活性依然较强且趋于稳定,TPC可以作为良好的新型镍基催化剂载体。  相似文献   
37.
38.
Sodium/potassium-ion batteries (SIBs/PIBs) arouse intensive interest on account of the natural abundance of sodium/potassium resources, the competitive cost and appropriate redox potential. Nevertheless, the huge challenge for SIBs/PIBs lies in the scarcity of an anode material with high capacity and stable structure, which are capable of accommodating large-size ions during cycling. Furthermore, using sustainable natural biomass to fabricate electrodes for energy storage applications is a hot topic. Herein, an ultra-small few-layer nanostructured MoSe2 embedded on N, P co-doped bio-carbon is reported, which is synthesized by using chlorella as the adsorbent and precursor. As a consequence, the MoSe2/NP-C-2 composite represents exceedingly impressive electrochemical performance for both sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs). It displays a promising reversible capacity (523 mAh g−1 at 100 mA g−1 after 100 cycles) and impressive long-term cycling performance (192 mAh g−1 at 5 A g−1 even after 1000 cycles) in SIBs, which are some of the best properties of MoSe2-based anode materials for SIBs to date. To further probe the great potential applications, full SIBs pairing the MoSe2/NP-C-2 composite anode with a Na3V2(PO4)3 cathode also exhibits a satisfactory capacity of 215 mAh g−1 at 500 mA g−1 after 100 cycles. Moreover, it also delivers a decent reversible capacity of 131 mAh g−1 at 1 A g−1 even after 250 cycles for PIBs.  相似文献   
39.
The mechanism of the molybdenum‐catalyzed deoxydehydration (DODH) of vicinal diols has been investigated using density functional theory. The proposed catalytic cycle involves condensation of the diol with an MoVI oxo complex, oxidative cleavage of the diol resulting in an MoIV complex, and extrusion of the alkene. We have compared the proposed pathway with several alternatives, and the results have been corroborated by comparison with the molybdenum‐catalyzed sulfoxide reduction recently published by Sanz et al. and with experimental observations for the DODH itself. Improved understanding of the mechanism should expedite future optimization of molybdenum‐catalyzed biomass transformations.  相似文献   
40.
This study presents a novel approach for the chemical representation of lignin for modelling the reaction kinetics of lignin in lignocellulosic biomass. This methodology relies on the definition of dimeric pseudo-components containing phenolic functionalities, i.e., p-hydroxyphenyl, guaiacyl and syringyl groups, as measured in real biomass and native lignin through wet chemistry and spectroscopic techniques. The reactivities of the lignin pseudo-components are modelled through a series of lumped unidirectional reactions, whose product formation and reaction rate constants are optimised to replicate a comprehensive experimental dataset gathered from several works available in the literature. The new kinetic model contributes to the state-of-the-art by providing a more accurate depiction of the conversion rates, selectivity of char vs. volatiles, and aromatic composition in condensable products in line with the inherent reactivity of lignin functionalities and the empirical observations of lignin depolymerisation and thermal degradation at low (<1?K/s) and high heating rates (>50?K/s).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号