首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9922篇
  免费   1738篇
  国内免费   1263篇
化学   10261篇
晶体学   108篇
力学   110篇
综合类   30篇
数学   14篇
物理学   2400篇
  2024年   15篇
  2023年   158篇
  2022年   292篇
  2021年   507篇
  2020年   682篇
  2019年   541篇
  2018年   475篇
  2017年   557篇
  2016年   762篇
  2015年   739篇
  2014年   833篇
  2013年   980篇
  2012年   888篇
  2011年   892篇
  2010年   685篇
  2009年   674篇
  2008年   604篇
  2007年   582篇
  2006年   447篇
  2005年   384篇
  2004年   260篇
  2003年   247篇
  2002年   171篇
  2001年   170篇
  2000年   111篇
  1999年   79篇
  1998年   46篇
  1997年   40篇
  1996年   26篇
  1995年   21篇
  1994年   16篇
  1993年   6篇
  1992年   6篇
  1991年   4篇
  1990年   10篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1985年   3篇
  1983年   4篇
  1982年   1篇
  1979年   1篇
排序方式: 共有10000条查询结果,搜索用时 437 毫秒
991.
利用柠檬酸三钠还原硝酸银制备了银纳米颗粒(AgNPs),然后通过氨水水解正硅酸乙酯(TEOS)的方法,在AgNPs上沉积SiO2,制备出以Ag为核,SiO2为壳的复合纳米颗粒(Ag@SiO2).调节TEOS用量,可以控制SiO2层的厚度.根据AgNPs的局域表面等离激元共振(LSPR)效应,将制得的Ag@SiO2颗粒用于H2O2的检测,检测下限为1μmol/L,并可以通过控制SiO2层的厚度方便地调节Ag@SiO2颗粒与H2O2反应的速率.与传统方法相比,具有简单、快速、成本低的优点.分别运用TEM、紫外-可见分光光度计对反应前后Ag@SiO2颗粒形貌及反应过程中其LSPR吸收的变化进行了表征.  相似文献   
992.
Thin films of PS-b-PEO block copolymers were utilized as structured reservoirs for localized nanoscale precipitation reactions. By consecutively immersing the film into solutions of thioacetamide and cadmium chloride, we were able to obtain a monolayer of cadmium sulfide nanostructures on top of the block copolymer film. AFM and grazing incidence small angle X-ray scattering revealed spherical nanostructures (d = 15 nm) corresponding to the dimensions given by the block copolymer film. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1569–1573, 2010  相似文献   
993.
We have studied the adsorption of end-attaching block copolymer chains inside the cylindrical pores of nanoporous alumina. Highly asymmetric PS-PEO block copolymers, with a small PEO anchoring block and a long PS dangling block, were allowed to adsorb onto porous alumina substrates with an average pore diameter of ∼200 nm from toluene solution. The adsorption process was monitored using FTIR spectroscopy, whereas depth profile analysis was performed by means of XPS and Ar+ ion sputtering. It is found that the PS-PEO adsorption kinetics in porous alumina are ∼4 orders of magnitude slower than the corresponding case of a flat alumina substrate. It appears that chains adsorbed near the pore entrance early on tend to form a barrier for chains entering the pore at later times, thereby slowing down the adsorption process significantly. This effect is much more pronounced for large chains whose dimensions are comparable with the pore diameter. The equilibrium adsorbance value is also affected by chain size due to the additional entropic penalty associated with chain confinement, the adsorbance falling substantially when the chain dimensions become comparable with the pore diameter. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1676–1682, 2010  相似文献   
994.
Novel guanidinium ionic liquid‐grafted rigid poly(p‐phenylene) (PPPIL) microspheres have been developed for metal scavenging and catalysis. The noble‐metal nanoparticles supported on the microspheres surface can be used as efficient heterogeneous catalysts. The combination of nanoparticles and ionic liquid fragments on the microsphere surfaces enhance the activity and durability of the catalyst. The PPPIL ? Pd0 catalyst has been tested in the Suzuki cross‐coupling reaction, and exhibits much higher catalytic activity than Pd catalysts supported on porous polymer matrices. The PPPIL ? Pd0 catalyst can be recycled at least for nine runs without any significant loss of activity. The present approach may, therefore, have potential applications in transition‐metal‐nanocatalyzed reactions.  相似文献   
995.
Colloidal silicalite‐1 zeolite was crystallized from a concentrated clear sol prepared from tetraethylorthosilicate (TEOS) and aqueous tetrapropylammonium hydroxide (TPAOH) solution at 95 °C. The silicate speciation was monitored by using dynamic light scattering (DLS), synchrotron small‐angle X‐ray scattering (SAXS), and quantitative liquid‐state 29Si NMR spectroscopy. The silicon atoms were present in dissolved oligomers, two discrete nanoparticle populations approximately 2 and 6 nm in size, and crystals. On the basis of new insight into the evolution of the different nanoparticle populations and of the silicate connectivity in the nanoparticles, a refined crystallization mechanism was derived. Upon combining the reagents, different types of nanoparticles (ca. 2 nm) are formed. A fraction of these nanoparticles with the least condensed silicate structure does not participate in the crystallization process. After completion of the crystallization, they represent the residual silicon atoms. Nanoparticles with a more condensed silicate network grow until approximately 6 nm and evolve into building blocks for nucleation and growth of the silicalite‐1 crystals. The silicate network connectivity of nanoparticles suitable for nucleation and growth increasingly resembles that of the final zeolite. This new insight into the two classes of nanoparticles will be useful to tune the syntheses of silicalite‐1 for maximum yield.  相似文献   
996.
The electrochemical and electrochemiluminescence (ECL) detection of cell lines of Burkitt’s lymphoma (Ramos) by using magnetic beads as the separation tool and high‐affinity DNA aptamers for signal recognition is reported. Au nanoparticles (NPs) bifunctionalized with aptamers and CdS NPs were used for electrochemical signal amplification. The anodic stripping voltammetry technology employed for the analysis of cadmium ions dissolved from CdS NPs on the aggregates provided a means to quantify the amount of the target cells. This electrochemical method could respond down to 67 cancer cells per mL with a linear calibration range from 1.0×102 to 1.0×105 cells mL?1, which shows very high sensitivity. In addition, the assay was able to differentiate between target and control cells based on the aptamer used in the assay, indicating the wide applicability of the assay for diseased cell detection. ECL detection was also performed by functionalizing the signal DNA, which was complementary to the aptamer of the Ramos cells, with tris(2,2‐bipyridyl) ruthenium. The ECL intensity of the signal DNA, replaced by the target cells from the ECL probes, directly reflected the quantity of the amount of the cells. With the use of the developed ECL probe, a limit of detection as low as 89 Ramos cells per mL could be achieved. The proposed methods based on electrochemical and ECL should have wide applications in the diagnosis of cancers due to their high sensitivity, simplicity, and low cost.  相似文献   
997.
(R)‐(+)‐1,1′‐Bi‐2‐naphthol ((R)‐(+)‐Binol)‐functionalized (Binol=2,2′‐dihydroxy‐1,1′‐binaphthyl) chiral mesoporous organosilica nanospheres with uniform particle size (100 to 300 nm) have been synthesized by co‐condensation of tetraethoxysilane and (R)‐2,2′‐di(methoxymethyl)oxy‐6,6′‐di(1‐propyl trimethoxysilyl)‐1,1′‐binaphthyl in a basic medium with cetyltrimethylammonium bromide as the template. Nanospheres with a radiative 2D hexagonal channel arrangement exhibit higher enantioselectivity and turnover frequency than those with a penetrating 2D hexagonal channel arrangement (94 versus 88 % and 43 versus 15 h?1, respectively) in the asymmetric addition of diethylzinc to aldehydes. In addition, under similar conditions, the enantioselectivity of the nanospheres can be greatly improved as the structural order of the framework increases. These results clearly show that the structural order of nanospheres affects enantioselective reactions. The enantioselectivity of the nanospheres synthesized by the co‐condensation method is higher than that of nanospheres prepared by a grafting method and even higher than that of their homogeneous counterpart. These results indicate that the bite angle of (R)‐(+)‐Binol bridging in a more rigid porous network is in a more favorable position for achieving higher enantioselectivity. The efficiency of a co‐condensation method for the synthesis of high‐performance heterogeneous asymmetric catalysts is also reported.  相似文献   
998.
Salicylic acid (SA) is a biological substance that acts as a phytohormone and plays an important role in signal transduction in plants. It is important to accurately and sensitively detect SA levels. A gold electrode modified with copper nanoparticles was used to assay the electrocatalytic oxidation of salicylic acid. It was found that the electrochemical behavior of salicylic acid was greatly improved at copper nanoparticles, indicating that anodic oxidation could be catalyzed at copper nanoparticles. And the pH had remarkable effect on the electrochemical process, a very well-defined oxidation peak appeared at pH 13.3 (0.2 M NaOH). The kinetics parameters of this process were calculated and the heterogeneous electron transfer rate constant (k) was determined to be 1.34 × 10−3 cm s−1, and (1 − α)nα was 1.22. The gold electrode modified with copper nanoparticles could detect SA at a higher sensitivity than common electrodes. The electrode was used to detect the SA levels in oilseed rape infected with the fungal pathogen Sclerotinia sclerotiorum. The results showed that the SA concentration reached a maximum during the 10th-25th hours after infection. This result was very similar to that determined by HPLC, indicating that the gold electrodes modified with copper nanoparticles could be used as salicylic acid sensors.  相似文献   
999.
Wenjuan Li  Yaqin Chai 《Talanta》2010,82(1):367-111
A new glucose biosensor had been developed by immobilizing positively charged gold nanoparticles (PGNs) on organosilica nanosphere functionalized prussian blue (OSiFPB)-modified gold electrode. The OSiFPB compound could not only effectively prevent the leakage of the PB mediator during measurements, but also easily form stable film on the electrode surface with efficient redox-activity and excellent conductivity. Furthermore, with the negatively charged surface of OSiFPB, this film could be used as an interface to adsorb the PGNs, which provided a congenial microenvironment for adsorbing biomolecules and decreased the electron-transfer impedance. So, with glucose oxidase as a model biomolecular, the proposed sensor showed rapid and highly sensitive amperometric response to glucose and this immobilization approach effectively improved the stability of the electron-transfer mediator. This work would be promising for construction of biosensor and bioelectronic devices.  相似文献   
1000.
Hui Li  Yongheng Zhu  Qun Xiang 《Talanta》2010,82(2):458-70
SnO2 nanowires with an average 0.6 μm in length and about 25 nm in diameter were prepared by a hydrothermal method. The sensors were fabricated using SnO2 nanowires assembled with Pd nanocrystals. The sensing properties of the sensors such as selectivity, response-recovery time and stability were tested at 290 °C. After assembling Pd nanocrystals onto the surface of SnO2 nanowires, the gas sensing properties of the sensors toward H2S were improved. The sensors based on Pd nanoparticle@SnO2 nanowires exhibit high stability owing to stable single crystal structure. The mechanism of promoting sensing properties with Pd nanoparticles is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号