首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   7篇
  国内免费   25篇
化学   191篇
物理学   12篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   6篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   6篇
  2015年   2篇
  2014年   7篇
  2013年   7篇
  2012年   4篇
  2011年   6篇
  2010年   6篇
  2009年   14篇
  2008年   39篇
  2007年   11篇
  2006年   14篇
  2005年   5篇
  2004年   7篇
  2003年   4篇
  2002年   7篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   9篇
  1996年   16篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
排序方式: 共有203条查询结果,搜索用时 78 毫秒
101.
Bacterial attachment on reactive ceramic ultrafiltration membranes   总被引:1,自引:0,他引:1  
Bacterial attachment is an initial stage in biofilm formation that leads to flux decline in membrane water filtration. This study compares bacterial attachment among three photocatalytic ceramic ultrafiltration membranes for the prevention of biofilm formation. Zirconia ceramic ultrafiltration membranes were dip-coated with anatase and mixed phase titanium dioxide photocatalysts to prevent biofilm growth. The membrane surface was characterized in terms of roughness, hydrophobicity, bacterial cell adhesion, and attached cell viability, all of which are important factors in biofilm formation. The titanium dioxide coatings had minimal impact on the membrane roughness, reduced the hydrophobicity of membranes, prevented Pseudomonas putida attachment, and reduced P. putida viability. Degussa P25 is a particularly promising reactive coating because of its ease of preparation, diminished cell attachment and viability in solutions with low and high organic carbon concentrations, and reduced flux decline. These reactive membranes offer a promising strategy for fouling resistance in water filtration systems.  相似文献   
102.
Fouling in the low-pressure membrane filtration of secondary effluent for water reuse can be severe due to the complex nature of the components in the water. Pre-filtration, coagulation and anion exchange resin were investigated as pre-treatments for reducing fouling of microfiltration (MF) and ultrafiltration (UF) membranes in the treatment of activated sludge-lagoon effluent. The key fouling components were determined using several analytical techniques to detect differences in the organic components between the feed and permeate.Pre-filtration (1.5 μm) enhanced the permeate flux for MF by removing particulates, but had little effect for UF. Marked flux improvement was obtained by coagulation pre-treatment at 5 mg L−1 Al3+ with internal membrane fouling being substantially alleviated. Anion exchange resin removed >50% of effluent organic matter but did not improve the flux or reduce irreversible membrane fouling. These results, together with detailed organic compositional analyses, showed that the very high-molecular weight organic materials (40–70 kDa) comprised of hydrophilic components such as soluble microbial products, and protein-like extracellular matter were the major cause of membrane fouling.  相似文献   
103.
漏出性胸腔积液中的多肽和蛋白质等生物分子直接或间接地与机体特定的生理、病理状态相关,反映了肺部或者全身其它部位疾病的信息.本研究利用超滤法将漏出性胸腔积液中的多肽组分进行分离,经脱盐富集后,进行纳升液相色谱-串联质谱分析.结果表明,在漏出性胸腔积液中共鉴定到来源于52种蛋白的314条多肽,超过一半的肽段来源于纤维蛋白原,并且许多肽段具有阶梯序列的特征.此外,在来源于胶原蛋白和纤维蛋白原的多肽中还发现了大量的脯氨酸氧化修饰.基因本体论富集分析显示,漏出性胸腔积液多肽组分所属蛋白均具有胞外分泌的属性.本研究给出了漏出性胸腔积液中多肽组的序列、等电点、分子量、翻译后修饰等理化参数的分布特征,为进一步寻找肺部疾病相关的多肽标志物提供了可借鉴的参考数据和分析方法.  相似文献   
104.
Polyethersulfone membranes are widely used for ultrafiltration and microfiltration especially in the dairy industry, but they are believed to degrade when exposed to the sodium hypochlorite solution that is used to sanitize the processing equipment. Such membranes were exposed to sodium hypochlorite for up to 25,000 ppm-day at 55 °C, and pH 9 and 12. Mechanical properties as measured by dynamic mechanical analysis and tensile strength did not change greatly, but surface properties measured by FTIR-ATR, field emission scanning electron microscopy and associated energy dispersive X-ray spectroscopy detected significant changes in the surface. Surface pitting was observed and was found to be most severe at pH 9. It was thought that pitting was the likely cause of degradation in performance of the membranes and that pits could act as stress raisers leading to cracking.  相似文献   
105.
The flat sheet polyethersulfone (PES) and poly(vinylidene fluoride) (PVDF) membranes were prepared by immersion precipitation technique. The influence of hot air and water treatment on morphology and performance of membranes were investigated. The membranes were characterized by AFM, SEM, cross-flow filtration of milk and fouling analysis. The PES membrane turns to a denser structure with thick skin layer by air treatment at various temperatures during different times. This diminishes the pure water flux (PWF). However the milk permeation flux (MPF) was considerably improved at 100 °C air treatment for 20 min with no change in protein rejection. The smooth surface and slight decrease in surface pore size for air treated PES membrane at 100 °C compared to untreated membrane may cause this behavior for the membrane. The water treatment of PES membranes at 55 and 75 °C declines the PWF and MPF and increases the protein rejection. This is due to slight decrease in membrane surface pore size. The treatment of PES membrane with water at higher temperature results in a porous structure with superior performance. The fouling analysis of 20 min treated membrane indicates that the surface properties of 100 °C air treated and 95 °C water treated PES membranes are improved compared to untreated membrane. The SEM observation depicts that the morphology of air and water treated PVDF membranes was denser and smoother with increasing the heat treatment temperature. The 20 min air treated PVDF membranes at 100 °C and water treated at 95 °C exhibited the highest performance and antifouling properties.  相似文献   
106.
将辣素功能结构单体N-(4-羟基-3-甲氧基苯甲基)丙烯酰胺(HMBA)和甲基丙烯酸甲酯(MMA)通过自由基引发合成出抑菌型共聚物P(H-co-M), 通过红外吸收光谱和热重分析证实了共聚物的结构. 采用共混法将共聚物引入聚砜(PSF)铸膜液中, 通过浸没沉淀相转化法制备了新型抑菌超滤膜. 考察了P(H-co-M)含量对超滤膜分离性能及抑菌性能的影响. 结果表明, 当P(H-co-M)质量分数为0.5%时, 超滤膜分离性能最佳, 对5 mg/L腐殖酸溶液的稳定水通量为122.2 L/(m2·h), 截留率为84.4%, 与未添加P(H-co-M)的超滤膜相比, 分别提高了19.2%和9.2%. 改性超滤膜具有较强的抑菌性能, 当P(H-co-M)含量为1.0%时, 抑菌率最大(约80.7%).  相似文献   
107.
108.
Cortex Phellodendri is a typical Chinese herb with a large number of alkaloids existing in all parts of it. The most common methods for screening and isolating alkaloids are mostly labor intensive and time consuming. In this study, a new assay based upon ultrafiltration liquid chromatography was developed for the rapid screening of ligands for α‐glucosidase and xanthine oxidase. The C. Phellodendri extract was found to contain two alkaloids with both α‐glucosidase‐ and xanthine oxidase binding activities and one lactone with α‐glucosidase‐binding activity. Subsequently, with the help of high‐speed countercurrent chromatography, the specific binding ligands including palmatine, berberine, and obaculactone with purities of 97.38, 96.12, and 96.08%, respectively, were successfully separated. An optimized low‐toxicity two‐phase solvent system composed of ethyl acetate/n‐butanol/ethanol/water (3.5:1.7:0.5:5, v/v/v/v) was used to isolate the three compounds mentioned above from C. Phellodendri. The targeted compounds were identified by liquid chromatography coupled with mass spectrometry and NMR spectroscopy. Therefore, ultrafiltration liquid chromatography combined with high‐speed countercurrent chromatography is not only a powerful tool for screening and isolating α‐glucosidase and xanthine oxidase inhibitors in complex samples but is also a useful platform for discovering bioactive compounds for the prevention and treatment of diabetes mellitus and gout.  相似文献   
109.
In recent years, Transparent exopolymer particles(TEPs) have been identified as significant contributors to membrane surface biofouling. Reported research on the effect of TEPs on membrane fouling has mainly focused on algae-derived TEPs in the ocean, and very limited investigations have been conducted on those in freshwater systems. In this study, we investigated the characteristics of TEPs derived from Microcystis aeruginosa and their influence on membrane fouling in an ultrafiltration (UF) system. The results indicated that bound TEPs could lead to more serious membrane fouling while free TEPs caused more serious irreversible membrane fouling. Further studies showed that in free TEP solutions, small-sized colloidal TEPs (c-TEPs) rather than large-sized particle TEPs (p-TEPs) showed a significantly positive correlation with irreversible membrane fouling. The presence of Ca2+ ions in influent water can reduce membrane fouling to some extent since a low concentration of Ca2+ ions (1 mM) can lead to the transformation of most free TEPs from the colloidal to particulate state. Both acidic and alkaline environments of free TEP solutions result in more serious membrane fouling compared to a neutral environment of free TEP solution. The negative impact of the acidic environment on membrane fouling was more significant than that of the alkaline environment. The abovementioned results show that when using a UF system to filter water with high algal content, greater attention should be paid to free TEPs, especially those in the colloidal state, because they can cause serious, irreversible membrane fouling.  相似文献   
110.
The removal of manganese from groundwater, using water-soluble chelating polymers such as polyacrylic acid (PAA) in combination with ultrafiltration (UF), was investigated. The effects of the solution pH and polymer dosages on the manganese removal were evaluated, and the removal efficiency was modeled considering the relevant chemical equilibria. In the absence of polymer, manganese removal with UF membranes alone was negligible at acidic pH values, but the removal increased substantially when polyacrylic acid (PAA) was added to the feed solution. The increase can be attributed to the formation of Mn2+–PAA chelates which are rejected by the membranes. A mathematical model was developed to explain this phenomenon based on chemical equilibria, including complex formation and precipitation. The chelation number (i.e., the number of carboxyl groups in the PAA binding to a single metal ion) and the equilibrium constants for metal–PAA chelation reactions were obtained by fitting experimental data at acidic pH in single-divalent metal systems. The model was able to predict Mn removal in chelation/UF systems at various pH levels and polymer dosages, and to account for the competitive interactions of PAA with the target (Mn2+) and background species (Ca2+, Mg2+) in multi-component systems. The predicted Mn removal efficiency was most sensitive to the chelation number.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号