首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2547篇
  免费   68篇
  国内免费   119篇
化学   881篇
晶体学   28篇
力学   191篇
综合类   2篇
数学   147篇
物理学   1485篇
  2024年   2篇
  2023年   21篇
  2022年   26篇
  2021年   26篇
  2020年   44篇
  2019年   32篇
  2018年   33篇
  2017年   43篇
  2016年   74篇
  2015年   69篇
  2014年   117篇
  2013年   113篇
  2012年   120篇
  2011年   278篇
  2010年   194篇
  2009年   248篇
  2008年   215篇
  2007年   214篇
  2006年   195篇
  2005年   122篇
  2004年   86篇
  2003年   76篇
  2002年   81篇
  2001年   36篇
  2000年   41篇
  1999年   48篇
  1998年   29篇
  1997年   14篇
  1996年   10篇
  1995年   18篇
  1994年   9篇
  1993年   10篇
  1992年   6篇
  1991年   9篇
  1990年   7篇
  1989年   10篇
  1988年   2篇
  1987年   7篇
  1986年   5篇
  1985年   3篇
  1984年   2篇
  1983年   6篇
  1982年   1篇
  1981年   8篇
  1979年   2篇
  1978年   13篇
  1976年   1篇
  1975年   4篇
  1973年   4篇
排序方式: 共有2734条查询结果,搜索用时 15 毫秒
21.
The Au/FePt samples were prepared by depositing a gold cap layer at room temperature onto a fully ordered FePt layer, followed by an annealing at 800 °C for the purpose of interlayer diffusion. After the deposition of the gold layer and the high-temperature annealing, the gold atoms do not dissolve into the FePt Ll0 lattice. Compared with the continuous FePt film, the TEM photos of the bilayer Au(60 nm)/FePt(60 nm) show a granular structure with FePt particles embedded in Au matrix. The coercivity of Au(60 nm)/FePt(60 nm) sample is 23.5 kOe, which is 85% larger than that of the FePt film without Au top layer. The enhancement in coercivity can be attributed to the formation of isolated structure of FePt ordered phase.  相似文献   
22.
Hard films prepared by pulsed high energy density plasma (PHEDP) are characterized by high film/substrate adhesive strength, and high wear resistance. Titanium carbonitride (TiCN) films were deposited onto YG11C (ISO G20) cemented carbide cutting tool substrates by PHEDP at room temperature. XRD, XPS, SEM, AES, etc. were adopted to analyze the phases (elements) composition, microstructure and the interface of the films, respectively. The results show that, the uniform dense films are composed of grains ranging from 70 to 90 nm. According to the AES result, there is a broad transition layer between the film and the substrate, due to the ion implantation effect of the PHEDP. The transition layer is favorable for the film/substrate adhesion.  相似文献   
23.
对以强猝灭气体工作的小间隙多丝室及其放电机制进行了研究,实验表明,因为工作在饱和模式区,这种室同时具有很高的气体放大和相当快的时间特性.文中探讨了放电机制,雪崩中空间电荷效应以及电离光子的产生和作用是重要的因素,而其中后一因素又受到强猝灭气体的抑制.  相似文献   
24.
Zinc oxide (ZnO) films were deposited on glass substrates by the sol-gel dip coating method using acrylamide route. The films were characterized by X-ray diffraction studies which indicated wurtzite structure. Optical absorption measurements indicated band gap in the range 3.17-3.32 eV. XPS studies indicated the formation of ZnO. The resistivity of the films were in the range 1000-10,000 ohm cm.  相似文献   
25.
FexNi100−x nanometric films were deposited on SiO2/Si substrates at room temperature using the pulsed laser deposition technique. The targets were Fe-Ni amorphous magnetic foils with composition Fe50Ni50, Fe35Ni65 and Fe22Ni78. Morphological and structural properties of the deposited films were investigated using scanning electron microscopy, Rutherford backscattering spectrometry, grazing incidence X-ray diffraction, and X-ray reflectivity. Electrical and magnetic characteristics of the films were investigated by using the four-point probe and the magneto-optic Kerr effect techniques, respectively. The film properties are strictly dependent on the Fe-Ni compositional ratio.  相似文献   
26.
The paper presents a general method to find asymptotics for a (multi-)wedge system containing a thin wedge. It employs separation of the symmetric and anti-symmetric parts of the boundary displacements and tractions of the wedge. The method is applicable when the angle of the thin wedge turns to zero. A physical interpretation of the derived equations is obtained by using power expansions of non-polynomial functions, which appear after the Mellin transform. We establish that the first term in the expansion of the symmetric part corresponds to shear, while the first term of the anti-symmetric part describes deflection of the wedge axis. Numerical experiments, performed by using a code developed on the basis of the theory, show that using only the first terms of the expansions insignificantly influence accuracy: the approximate results coincide with the exact values of roots to the third significant digit even for the wedge angle of 30°.  相似文献   
27.
Polycrystalline (1−x)Ta2O5xTiO2 thin films were formed on Si by metalorganic decomposition (MOD) and annealed at various temperatures. As-deposited films were in the amorphous state and were completely transformed to crystalline after annealing above 600 °C. During crystallization, a thin interfacial SiO2 layer was formed at the (1−x)Ta2O5xTiO2/Si interface. Thin films with 0.92Ta2O5–0.08TiO2 composition exhibited superior insulating properties. The measured dielectric constant and dissipation factor at 1 MHz were 9 and 0.015, respectively, for films annealed at 900 °C. The interface trap density was 2.5×1011 cm−2 eV−1, and flatband voltage was −0.38 V. A charge storage density of 22.8 fC/μm2 was obtained at an applied electric field of 3 MV/cm. The leakage current density was lower than 4×10−9 A/cm2 up to an applied electric field of 6 MV/cm.  相似文献   
28.
Laser-ablated Co-doped In2O3 thin films were fabricated under various growth conditions on R-cut Al2O3 and MgO substrates. All Co:In2O3 films are well-crystallized, single phase, and room temperature ferromagnetic. Co atoms were well substituted for In atoms, and their distribution is greatly uniform over the whole thickness of the films. Films grown at 550 °C showed the largest magnetic moment of about 0.5 μB/Co, while films grown at higher temperatures have magnetic moments of one order smaller. The observed ferromagnetism above room temperature in Co:In2O3 thin films has confirmed that doping few percent of magnetic elements such as Co into In2O3 could result in a promising magnetic material.  相似文献   
29.
Iron oxide thin films have been obtained by spray pyrolysis using 100% methanolic and ethanolic solutions of iron tri-chloride. The films were deposited onto ITO-coated glass substrates. The preparative conditions have been optimized to obtain compact, pin-hole-free and smooth thin films which are adherent to the substrate. The structural, morphological and compositional characterizations have been carried out by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis. The films deposited using ethanolic solution results into pure hematite; α-Fe2O3 thin films, however, films deposited using methanolic solution consists of hematite and maghemite-c phases of iron oxide. The films are nanocrystalline with particle size of 30-40 nm. The optical absorbance of the film was of the order of 105 cm−1. The optical band gap of films was found to be 2.26 and 2.20 eV for the films deposited using methanolic and ethanolic solutions, respectively.  相似文献   
30.
A novel instrument is described called the Thin film Analyser (TFA) which quantitatively measures changes in mechanical and rheological properties of drying films in-situ on a test panel. It is based around a simple force-sensing device, capable of carrying various probes, which can be positioned in anX-Y plane over the panel. Temperature control is achieved by means of a heating block under the sample. By imposing a thermal gradient along the block, measurements can be obtained at a series of temperatures in a single experiment. Several applications of the TFA to the drying of curable and latex-based coatings are discussed, as well as some more specialized uses. The TFA concept represents a novel approach to the thermal analysis of thin films.The authors gratefully acknowledge the design, engineering and software development work of the Instrument Group at ICI Paints, in particular John Hayton, Neil Burrows, Tony Evans and Ian Francis, who have now built three versions of the TFA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号