首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   3篇
  国内免费   2篇
化学   85篇
力学   1篇
数学   3篇
物理学   28篇
  2024年   4篇
  2023年   64篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2017年   2篇
  2015年   1篇
  2014年   5篇
  2013年   1篇
  2012年   3篇
  2011年   4篇
  2008年   1篇
  2007年   1篇
  2005年   2篇
  2004年   6篇
  2003年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1992年   2篇
  1991年   2篇
  1987年   1篇
排序方式: 共有117条查询结果,搜索用时 79 毫秒
111.
Cuproptosis is a new form of programmed cell death and exhibits enormous potential in cancer treatment. However, reducing the undesirable Cu ion release in normal tissue and maximizing the copper-induced therapeutic effect in cancer sites are two main challenges. In this study, we constructed a photothermally triggered nanoplatform (Au@MSN-Cu/PEG/DSF) to realize on-demand delivery for synergistic therapy. The released disulfiram (DSF) chelated with Cu2+ in situ to generate highly cytotoxic bis(diethyldithiocarbamate)copper (CuET), causing cell apoptosis, and the formed Cu+ species promoted toxic mitochondrial protein aggregation, leading to cell cuproptosis. Synergistic with photothermal therapy, Au@MSN-Cu/PEG/DSF could effectively kill tumor cells and inhibit tumor growth (inhibition rate up to 80.1 %). These results provide a promising perspective for potential cancer treatment based on cuproptosis, and may also inspire the design of advanced nano-therapeutic platforms.  相似文献   
112.
As a reactive hydrogen species, the hydrogen radical (H⋅) scarcely sees applications in tumor biological therapy due to the very limited bio-friendly sources of H⋅. In this work, we report that TAF can act as an organic photosensitizer as well as an efficient photocatalytic H⋅ generator with reduced glutathione (GSH) as a fuel. The photoactivation of TAF leads to cell death in two ways including triple amplification of oxidative stress via ferroptosis-apoptosis under normoxia and apoptosis through biological reductions under hypoxia. TAF presents excellent biosafety with ultrahigh photocytotoxicity index at an order of magnitude of 102–103 on both normoxic and hypoxic cells. The in vitro data suggest that H⋅ therapy is promising to overcome the challenge of tumor hypoxia at low doses of both photocatalyst and light. In addition, the capability of near-infrared two-photon excitation would benefit broad biological applications.  相似文献   
113.
Although metallacycle-based supramolecular photosensitizers (PSs) have attracted increasing attention in biomedicine, their clinical translation is still hindered by their inherent dark toxicity. Herein, we report what to our knowledge is the first example of a molecular engineering approach to building blocks of metallacycles for constructing a series of supramolecular PSs ( RuA–RuD ), with the aim of simultaneously reducing dark toxicity and enhancing phototoxicity, and consequently obtaining high phototoxicity indexes (PI). Detailed in vitro investigations demonstrate that RuA–RuD display high cancer cellular uptake and remarkable antitumor activity even under hypoxic conditions. Notably, RuD exhibited no dark toxicity and displayed the highest PI value (≈406). Theoretical calculations verified that RuD has the largest steric hindrance and the lowest singlet-triplet energy gap (ΔEST, 0.61 eV). Further in vivo studies confirmed that RuD allows safe and effective phototherapy against A549 tumors.  相似文献   
114.
Proteolysis targeting chimeras (PROTACs) technology is an emerging approach to degrade disease-associated proteins. Here, we report carbon-dot (CD)-based PROTACs (CDTACs) that degrade membrane proteins via the ubiquitin-proteasome system. CDTACs can bind to programmed cell death ligand 1 (PD-L1), recruit cereblon (CRBN) to induce PD-L1 ubiquitination, and degrade them with proteasomes. Fasting-mimicking diet (FMD) is also used to enhance the cellular uptake and proteasome activity. More than 99 % or 90 % of PD-L1 in CT26 or B16-F10 tumor cells can be degraded by CDTACs, respectively. Furthermore, CDTACs can activate the stimulator of interferon genes (STING) pathway to trigger immune responses. Thus, CDTACs with FMD treatment effectively inhibit the growth of CT26 and B16-F10 tumors. Compared with small-molecule-based PROTACs, CDTACs offer several advantages, such as efficient membrane protein degradation, targeted tumor accumulation, immune system activation, and in vivo detection.  相似文献   
115.
Chemo-dynamic therapy (CDT) based on the Fenton or Fenton-like reaction has emerged as a promising approach for cancer treatment. However, autophagy-mediated self-protection mechanisms of cancer cells pose a significant challenge to the efficacy of CDT. Herein, we developed metal-DNA nanocomplexes (DACs-Mn) to enhance CDT via DNAzyme inhibition of autophagy. Specifically, Mn-based catalyst in DACs-Mn was used to generate highly hydroxyl radicals (⋅OH) that kill cancer cells, while the ATG5 DNAzyme incorporated into DACs-Mn inhibited the expression of autophagy-associated proteins, thereby improving the efficacy of CDT. By disrupting the self-protective pathway of cells under severe oxidative stress, this novel approach of DACs-Mn was found to synergistically enhance CDT in both in vitro and in vivo models, effectively amplifying tumor-specific oxidative damage. Notably, the Metal-DNA nanocomplexes can also induce immunogenic cell death (ICD), thereby inhibiting tumor metastasis. Specifically, in a bilateral tumor model in mice, the combined approach of CDT and autophagy inhibition followed by immune checkpoint blockade therapy shown significant potential as a novel and effective treatment modality for primary and metastatic tumors.  相似文献   
116.
Cardiovascular diseases (CVDs) are the most prominent cause of disability and mortality in the world. Although there have been a variety of therapeutic options for the management of CVDs, most of the traditional therapeutic strategies could not sufficiently stop or reduce the progression of these diseases and may result in some side effects. With the advance in nanotechnology, a number of metal-based nanoparticles have been developed and shown promising potentials in the treatment of CVDs. In this review, we provide a comprehensive review of researches on recent development of metal-based nanoparticles in diagnosis and therapy in CVDs as biomedical materials. We also discuss the challenges in the clinical translation and potential risks in their application of CVD therapy. Based on the ongoing research and applications, we can conclude metal-based nanoparticles are expected to become potential therapeutics for the treatment of CVDs. But their application is still in its infancy and much more efforts should be made to enforce a clinical breakthrough.  相似文献   
117.
This review describes the design strategies used for the synthesis of various tetracyanobutadiene bridged donor-acceptor molecular architectures by a click type [2+2] cycloaddition-retroelectrocyclization (CA-RE) reaction sequence. The photophysical and electrochemical properties of the tetracyanobutadiene bridged molecular architectures based on various moieties including diketopyrrolopyrrole, isoindigo, benzothiadiazole, pyrene, pyrazabole, truxene, boron dipyrromethene (BODIPY), phenothiazine, triphenylamine, thiazole and bisthiazole are summarized. Further, we discuss some important applications of the tetracyanobutadiene bridged derivatives in dye sensitized solar cells, bulk heterojunction solar cells and photothermal cancer therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号