首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2443篇
  免费   327篇
  国内免费   152篇
化学   2456篇
晶体学   12篇
力学   30篇
综合类   8篇
数学   14篇
物理学   402篇
  2024年   3篇
  2023年   37篇
  2022年   50篇
  2021年   92篇
  2020年   118篇
  2019年   106篇
  2018年   72篇
  2017年   78篇
  2016年   147篇
  2015年   141篇
  2014年   152篇
  2013年   196篇
  2012年   178篇
  2011年   155篇
  2010年   151篇
  2009年   167篇
  2008年   142篇
  2007年   156篇
  2006年   117篇
  2005年   98篇
  2004年   98篇
  2003年   79篇
  2002年   75篇
  2001年   33篇
  2000年   27篇
  1999年   17篇
  1998年   21篇
  1997年   33篇
  1996年   24篇
  1995年   37篇
  1994年   23篇
  1993年   20篇
  1992年   14篇
  1991年   6篇
  1990年   7篇
  1989年   6篇
  1988年   10篇
  1987年   5篇
  1986年   8篇
  1985年   4篇
  1984年   3篇
  1982年   5篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1970年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有2922条查询结果,搜索用时 78 毫秒
181.
A series of meso‐ester‐substituted BODIPY derivatives 1–6 are synthesized and characterized. In particular, dyes functionalized with oligo(ethylene glycol) ether styryl or naphthalene vinylene groups at the α positions of the BODIPY core ( 3 – 6 ) become partially soluble in water, and their absorptions and emissions are located in the far‐red or near‐infrared region. Three synthetic approaches are attempted to access the meso‐carboxylic acid (COOH)‐substituted BODIPYs 7 and 8 from the meso‐ester‐substituted BODIPYs. Two feasible synthetic routes are developed successfully, including one short route with only three steps. The meso‐COOH‐substituted BODIPY 7 is completely soluble in pure water, and its fluorescence maximum reaches around 650 nm with a fluorescence quantum yield of up to 15 %. Time‐dependent density functional theory calculations are conducted to understand the structure–optical properties relationship, and it is revealed that the Stokes shift is dependent mainly on the geometric change from the ground state to the first excited singlet state. Furthermore, cell staining tests demonstrate that the meso‐ester‐substituted BODIPYs ( 1 and 3 – 6 ) and one of the meso‐COOH‐substituted BODIPYs ( 8 ) are very membrane‐permeable. These features make these meso‐ester‐ and meso‐COOH‐substituted BODIPY dyes attractive for bioimaging and biolabeling applications in living cells.  相似文献   
182.
The synthesis and characterization of a new type of chromophore, namely PePc consisting of a central phthalocyanine core and four fused perylene–bisimide (PBI) units is described for the first time. The entire architecture represents a highly extended conjugated heterocyclic π‐system with C4h symmetry. In order to guarantee pronounced solubility in organic solvents the corresponding PBI units were bay‐functionalized with tert‐butylphenoxy substituents. Next to the metal‐free macrocycle, PePcH2, also metallated macrocycles PePcM (M=Zn, Ni, Pb, Ru, Fe) were synthesized. The extensive fusion of the corresponding aromatic building blocks to the very large extended π‐system leads to a very narrow HOMO–LUMO gap and as a consequence to transparency in the visible but light absorption in the NIR region. Significantly, the azomethine N‐atoms N1?N4 of PePcM and PePcH2 are highly basic. The corresponding tetraprotonated systems can only be deprotonated with very strong non‐nucleophilic bases such as phosphazene bases. In the protonated forms PePcMH44+ and PePcMH64+ the absorption maximum is shifted back to the visible region due to the loss of conjugation. The experimental findings were corroborated with quantum mechanical calculations.  相似文献   
183.
The reaction of POCl3‐activated, readily soluble diketopyrrolopyrrole (DPP) with 2‐aminoheteroaromatics to yield 1:1 and 1:2 hydrogen chelates is described. Complexation of these hydrogen chelates with boron reagents results in thermally and photochemically stable fluorescent dyes (PP–azacyanines). The 1:2 complexes in particular absorb at long wavelengths and are brightly fluorescing. The rich photophysics of the new compounds are presented. Both the pronounced vibrational fine structure of the S0→S1 transitions and the observed fluorescence phenomena allow detailed conclusions to be made on the correlation between molecular structure and optical properties.  相似文献   
184.
Structurally unique π‐expanded diketopyrrolopyrroles (EDPP) were designed and synthesized. Strategic placement of a fluorene scaffold at the periphery of a diketopyrrolopyrrole through tandem Friedel–Crafts‐dehydration reactions resulted in dyes with supreme solubility. The structure of the dyes was confirmed by X‐ray crystallography verifying a nearly flattened arrangement of the ten fused rings. Despite the extended ring system, the dye still preserved good solubility and was further functionalized by using Pd‐catalyzed coupling reactions, such as the Buchwald–Hartwig amination. Photophysical studies of these new functional dyes revealed that they possess enhanced properties when compared with expanded DPPs in terms of two‐photon absorption cross‐section. It is further demonstrated that in addition to the initial diacetals, the final electrophilic cyclization step can also be applied to diketones. By placing two amine groups at peripheral positions of the resulting dyes, values of two‐photon absorption cross‐section on the level of 2000 GM around 1000 nm were achieved, which in combination with high fluorescence quantum yield (Φfl), generated a two‐photon brightness of approximately 1600 GM. These characteristics in combination with strong red emission (665 nm) make these new π‐expanded diketopyrrolopyrroles of major promise as two‐photon dyes for bioimaging applications. Finally, the corresponding N‐alkylated DPPs displayed a solid‐state fluorescence.  相似文献   
185.
Three new NPI–BODIPY dyads 1 – 3 (NPI=1,8‐naphthalimide, BODIPY=boron‐dipyrromethene) were synthesized, characterized, and studied. The NPI and BODIPY moieties in these dyads are electronically separated by oxoaryl bridges, and the compounds only differ structurally with respect to methyl substituents on the BODIPY fluorophore. The NPI and BODIPY moieties retain their optical features in molecular dyads 1 – 3 . Dyads 1–3 show dual emission in solution originating from the two separate fluorescent units. The variations of the dual emission in these compounds are controlled by the structural flexibilities of the systems. Dyads 1 – 3 , depending on their molecular flexibilities, show considerably different spectral shapes and dissimilar intensity ratios of the two emission bands. The dyads also show significant aggregation‐induced emission switching (AIES) on formation of nano‐aggregates in THF/H2O with changes in emission color from green to red. Whereas the flexible and aggregation‐prone compound 1 shows AIES, rigid systems with less favorable intermolecular interactions (i.e., 2 and 3 ) show aggregation‐induced quenching of emission. Correlations of the emission intensity and structural flexibility were found to be reversed in solution and aggregated states. Photophysical and structural investigations suggested that intermolecular interactions (e.g., π–π stacking) play a major role in controlling the emission of these compounds in the aggregated state.  相似文献   
186.
Heat stroke is a life‐threatening condition, featuring a high body temperature and malfunction of many organ systems. The relationship between heat shock and lysosomes is poorly understood, mainly because of the lack of a suitable research approach. Herein, by incorporating morpholine into a stable hemicyanine skeleton, we develop a new lysosome‐targeting near‐infrared ratiometric pH probe. In combination with fluorescence imaging, we show for the first time that the lysosomal pH value increases but never decreases during heat shock, which might result from lysosomal membrane permeabilization. We also demonstrate that this lysosomal pH rise is irreversible in living cells. Moreover, the probe is easy to synthesize, and shows superior overall analytical performance as compared to the existing commercial ones. This enhanced performance may enable it to be widely used in more lysosomal models of living cells and in further revealing the mechanisms underlying heat‐related pathology.  相似文献   
187.
Porphyrin dyes containing the carbazole electron donor have been designed and optimized by wrapping the porphyrin framework, introducing an additional ethynylene bridge to extend the wavelength range of light absorption, and further suppression of the dye aggregation by introducing additional alkoxy chains. Application of a cosensitization approach results in improved current density (Jsc) and open‐circuit voltage (Voc) values, thus achieving the highest cell efficiency of 10.45 %. This work provides an effective combined strategy of molecular design and cosensitization for developing efficient dye‐sensitized solar cells (DSSCs). In addition, carbazole has been demonstrated to be a promising donor for porphyrin sensitizers.  相似文献   
188.
A triethyleneglycol (TEG) chain, a linear peptide, and a cyclic peptide labeled with 7‐methoxycoumarin‐3‐carboxylic acid (MC) and 7‐diethylaminocoumarin‐3‐carboxylic acid (DAC) were used to thoroughly study Förster resonance energy transfer (FRET) in inclusion complexes. 1H NMR evidence was given for the formation of a 1:1 inclusion complex between β‐cyclodextrin (β‐CD) and the fluorophore moieties of model compounds. The binding constant was 20 times higher for DAC than for MC derivatives. Molecular modeling provided additional information. The UV/Vis absorption and fluorescence properties were studied and the energy transfer process was quantified. Fluorescence quenching was particularly strong for the peptide derivatives. The presence of β‐CDs reduced the FRET efficiency slightly. Dye‐labeled peptide derivatives can thus be used to form inclusion complexes with β‐CDs and retain most of their FRET properties. This paves the way for their subsequent use in analytical devices that are designed to measure the activity of matrix metalloproteinases.  相似文献   
189.
Hyper‐Rayleigh scattering experiments and quantum chemical calculations are combined to investigate the second‐order nonlinear optical responses of a series of three‐arm merocyanine derivatives. They exhibit an octupolar hyperpolarizability response with lower amplitude than crystal violet due to a lower extent of the photoinduced charge transfer and reduced bond length alternation. Strong effects on the second‐order optical response measured close to the two‐photon absorption level are clearly evidenced; for example, the effective measured polarization ratio deviates below the ideal octupolar value of 3/2 even at very low excitation power. These effects are attributed to two‐photon absorption resonance, which we believe modifies dynamically the population of the ground state versus that of the excited state.  相似文献   
190.
A set of linear and dissymmetric BODIPY‐bridged push–pull dyes are synthesized. The electron‐donating substituents are anisole and dialkylanilino groups. The strongly electron‐accepting moiety, a 1,1,4,4‐tetracyanobuta‐1,3‐diene (TCBD) group, is obtained by insertion of an electron‐rich ethyne into tetracyanoethylene. A nonlinear push–pull system is developed with a donor at the 5‐position of the BODIPY core and the acceptor at the 2‐position. All dyes are fully characterized and their electrochemical, linear and nonlinear optical properties are discussed. The linear optical properties of dialkylamino compounds show strong solvatochromic behavior and undergo drastic changes upon protonation. The strong push–pull systems are non‐fluorescent and the TCBD‐BODIPY dyes show diverse photochemistry and electrochemistry, with several reversible reduction waves for the tetracyanobutadiene moiety. The hyperpolarizability μβ of selected compounds is evaluated using the electric‐field‐induced second‐harmonic generation technique. Two of the TCBD‐BODIPY dyes show particularly high μβ (1.907 μm) values of 2050×10?48 and 5900×10?48 esu. In addition, one of these dyes shows a high NLO contrast upon protonation–deprotonation of the donor residue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号