首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2443篇
  免费   327篇
  国内免费   152篇
化学   2456篇
晶体学   12篇
力学   30篇
综合类   8篇
数学   14篇
物理学   402篇
  2024年   3篇
  2023年   37篇
  2022年   50篇
  2021年   92篇
  2020年   118篇
  2019年   106篇
  2018年   72篇
  2017年   78篇
  2016年   147篇
  2015年   141篇
  2014年   152篇
  2013年   196篇
  2012年   178篇
  2011年   155篇
  2010年   151篇
  2009年   167篇
  2008年   142篇
  2007年   156篇
  2006年   117篇
  2005年   98篇
  2004年   98篇
  2003年   79篇
  2002年   75篇
  2001年   33篇
  2000年   27篇
  1999年   17篇
  1998年   21篇
  1997年   33篇
  1996年   24篇
  1995年   37篇
  1994年   23篇
  1993年   20篇
  1992年   14篇
  1991年   6篇
  1990年   7篇
  1989年   6篇
  1988年   10篇
  1987年   5篇
  1986年   8篇
  1985年   4篇
  1984年   3篇
  1982年   5篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1970年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有2922条查询结果,搜索用时 31 毫秒
171.
Red emissive carbon dots(CDs) powder was synthesized on a large scale from phloroglucinol and boric acid by a novel solid state reaction with yield up to 75%. This method is safe and convenient, for it needs neither high pressure reactors nor complicated post-treatment procedures. The as-prepared carbon dots powder exhibited strong red fluorescence with excitation-independent behavior. XPS measurement and PL spectra suggest that such red fluorescence arise from boron-doped structures in CDs, which increases along with the boron concentration on CDs surface but decreases when the concentration quenching effect takes place. To overcome the aggregation induced fluorescence quenching of the solid CDs powder,the conventional methods are dispersing CDs into a large amount of inert substrates. But our present work provides a new strategy to realize strong red fluorescence of CDs in solid state. As a result, such carbon dots powder works well for latent fingerprint identification on various material surfaces.  相似文献   
172.
Take the cores and surface weathered soil from the Cretaceous red beds in the western of Dongshengmiao mine of Inner Mongolia and analysis with near-infrared spectroscopy. The result shows that near-infrared spectroscopy can identify mineral quickly through the characteristic absorption peaks of each group. The Cretaceous red beds in the western of Dongshengmiao mine is argillaceous cementation, it is mainly composed of quartz, feldspar, montmorillonite, illite, chlorite, muscovite etc, the mineral composition is mainly affected by the upstream source area. The clay mineral like montmorillonite water swelling and uneven drying shrinkage expands the original crack and creates new cracks, reduces its strength, which is the mainly reason of its disintegration. According to the composition of clay mineral, we speculate its weathering process is mainly physical weathering, the climate during the weathering is cold and dry. The results can not only improve the geological feature of the mining area, but also show that the near-infrared spectroscopy technology can analyze the mineral composition of soil and rock effectively on the basis of Mineral spectroscopy, which demonstrates the feasibility of the near-infrared spectroscopy can analyze minerals in soil and rock quickly, that shows the feasibility in geology study, provides new ideas for the future research of soil and rock.  相似文献   
173.
Synthetic routes have been developed to a number of (thio) squaraine dyes containing the residues of CH‐acids at the central cyclobutene ring. The electronic and spatial structure as well as the chemical conversions and optical behaviour of the compounds obtained have been studied both theoretically and by X‐ray diffraction analysis, 1H NMR and electronic spectroscopy. As shown, the electronic nature and sterical characteristics of the central ring substituents give rise to some general conformational features and crystal packing regularities and also govern the spectral position of the first π–π* absorption band. The structure–property relationships established in the study provide guidance for the purposeful design of deeply coloured (thio) squaraines. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
174.
《Current Applied Physics》2015,15(3):248-252
Red phosphors Ca9Bi1-x(PO4)7:xEu3+ (x = 0.06, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80 and 1.00) were synthesized by a conventional solid-state reaction (SSR) route. The X-ray diffraction patterns, photoluminescence spectra, ultraviolet–visible reflection spectroscopy, decay time and the International Commission on Illumination (CIE) chromaticity coordinates of these compounds were characterized and analyzed. The Eu-doped Ca9Bi(PO4)7 phosphors exhibited strong red luminescence which peaks located at 615 nm due to the 5D07F2 electric dipole transition of Eu3+ ions after excitation at 393 nm. Ultraviolet–visible spectra indicated that the band-gap of Ca9Bi0.30(PO4)7:0.70Eu3+ is larger than that of Ca9Bi(PO4)7. The results indicate that the phosphor Ca9Bi0.30(PO4)7:0.70Eu3+ can be a suitable red-emitting phosphor candidate for LEDs.  相似文献   
175.
Research on photocatalytic degradation rate of azo dyes using nano-strontium titanate in photocatalysis process was the main goal of present study. In this regard, the influence of the main operating parameters such a photocatalyst concentration, dye concentration, temperature, pH and the presence of hydrogen peroxide upon dye removal rate under UV irradiation was studied. The absorbance of samples was measured by a UV–Vis spectrophotometer. The structure and morphology of nano-powder were investigated using scanning electron microscopy and crystalline structure by X-ray diffraction spectroscopy. The results reveal that nano-strontium titanate has high and significant photocatalytic activity and in comparison with nano-titanium dioxide was superior photocatalyst.  相似文献   
176.
Sensors play a significant role in the detection of toxic species and explosives, and in the remote control of chemical processes. In this work, we report a single‐molecule‐based pH switch/sensor that exploits the sensitivity of dye molecules to environmental pH to build metal–molecule–metal (m‐M‐m) devices using the scanning tunneling microscopy (STM) break junction technique. Dyes undergo pH‐induced electronic modulation due to reversible structural transformation between a conjugated and a nonconjugated form, resulting in a change in the HOMO–LUMO gap. The dye‐mediated m‐M‐m devices react to environmental pH with a high on/off ratio (≈100:1) of device conductivity. Density functional theory (DFT) calculations, carried out under the non‐equilibrium Green’s function (NEGF) framework, model charge transport through these molecules in the two possible forms and confirm that the HOMO–LUMO gap of dyes is nearly twice as large in the nonconjugated form as in the conjugated form.  相似文献   
177.
The photochemical properties of indigo, a widely used industrial dye, has attracted both experimentalists and theoreticians from the beginning. Especially the high photostability of indigo has been the subject of intensive research. Recently, it was proposed that after photoexcitation an intramolecular proton transfer followed by a nonradiative relaxation to the ground state promote photostability. In indigo the hydrogen bond and the proton transfer occur between the opposing hemiindigo parts. Here, we provide experimental and theoretical evidence that a hydrogen transfer within one hemiindigo or hemithioindigo part is sufficient to attain photostability. This concept can serve as an interesting strategy towards new photostable dyes for the visible part of the spectrum.  相似文献   
178.
Porphyrins have drawn much attention as sensitizers owing to the large absorption coefficients of their Soret and Q bands in the visible region. In a donor and acceptor zinc porphyrin we applied a new strategy of introducing 2,1,3‐benzothiadiazole (BTD) as a π‐conjugated linker between the anchoring group and the porphyrin chromophore to broaden the absorption spectra to fill the valley between the Soret and Q bands. With this novel approach, we observed 12.75 % power‐conversion efficiency under simulated one‐sun illumination (AM1.5G, 100 mW cm?2). In this study, we showed the importance of introducing the phenyl group as a spacer between the BTD and the zinc porphyrin in achieving high power‐conversion efficiencies. Time‐resolved fluorescence, transient‐photocurrent‐decay, and transient‐photovoltage‐decay measurements were employed to determine the electron‐injection dynamics and the lifetime of the photogenerated charge carriers.  相似文献   
179.
Fluorescent dyes are commonly conjugated to nanomaterials for imaging applications using stochastic synthesis conditions that result in a Poisson distribution of dye/particle ratios and therefore a broad range of photophysical and biodistribution properties. We report the isolation and characterization of generation 5 poly(amidoamine) (G5 PAMAM) dendrimer samples containing 1, 2, 3, and 4 fluorescein (FC) or 6‐carboxytetramethylrhodamine succinimidyl ester (TAMRA) dyes per polymer particle. For the fluorescein case, this was achieved by stochastically functionalizing dendrimer with a cyclooctyne “click” ligand, separation into sample containing precisely defined “click” ligand/particle ratios using reverse‐phase high performance liquid chromatography (RP‐HPLC), followed by reaction with excess azide‐functionalized fluorescein dye. For the TAMRA samples, stochastically functionalized dendrimer was directly separated into precise dye/particle ratios using RP‐HPLC. These materials were characterized using 1H and 19F NMR spectroscopy, RP‐HPLC, UV/Vis and fluorescence spectroscopy, lifetime measurements, and MALDI.  相似文献   
180.
9‐Alkyl xanthenones with different aliphatic pendant groups have been easily prepared by means of nucleophilic addition of the corresponding Grignard derivative to a tert‐butyldimethylsilyl ether (TBDMS)‐protected 3,6‐dihydroxy‐xanthenone. The photophysical behavior of the new dyes has been explored by using absorption, steady‐state‐, and time‐resolved fluorescence measurements. We determined the equilibrium constants, visible spectral characteristics, fluorescence quantum yield, and decay times. Remarkably, they retain similar fluorescent properties of fluorescein including the characteristic phosphate‐mediated excited‐state proton‐transfer (ESPT) reaction. 6‐Hydroxy‐9‐isopropyl‐3H‐xanthen‐3‐one ( 5 ) was investigated in living cells; it presented a good permeability and efficient accumulation inside the cytosol. For the first time, we reported that the requirement of an aryl group at C‐9 is no longer needed and new fluorescent sensors can be therefore easily developed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号