首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4829篇
  免费   381篇
  国内免费   242篇
化学   1853篇
晶体学   89篇
力学   819篇
综合类   18篇
数学   675篇
物理学   1998篇
  2024年   6篇
  2023年   30篇
  2022年   48篇
  2021年   62篇
  2020年   93篇
  2019年   102篇
  2018年   74篇
  2017年   101篇
  2016年   158篇
  2015年   102篇
  2014年   163篇
  2013年   396篇
  2012年   179篇
  2011年   245篇
  2010年   181篇
  2009年   256篇
  2008年   273篇
  2007年   320篇
  2006年   276篇
  2005年   221篇
  2004年   242篇
  2003年   204篇
  2002年   211篇
  2001年   153篇
  2000年   160篇
  1999年   146篇
  1998年   142篇
  1997年   120篇
  1996年   104篇
  1995年   91篇
  1994年   91篇
  1993年   65篇
  1992年   67篇
  1991年   39篇
  1990年   25篇
  1989年   32篇
  1988年   30篇
  1987年   25篇
  1986年   31篇
  1985年   33篇
  1984年   34篇
  1983年   8篇
  1982年   16篇
  1981年   19篇
  1980年   11篇
  1979年   6篇
  1978年   13篇
  1977年   13篇
  1976年   13篇
  1973年   8篇
排序方式: 共有5452条查询结果,搜索用时 250 毫秒
101.
This paper reports the results of a variety of experiments carried out for understanding the solvation behavior of potassium thiocyanate in methanol–water mixtures. Electrical conductivity, speed of sound, viscosity, and FT-Raman spectra of potassium thiocyanate solutions in 5 and 10% methanol–water (w/w) mixtures were measured as functions of concentration and temperature. The conductivity and structural relaxation time suggest the ion–solvent and solvent-separated ion–ion associations increase as the salt concentration increases in the mixtures. The Raman band shifts due to the C–O stretching mode of methanol for the solvent mixtures reveal the formation of methanol–water complexes. The significant changes in the Raman bands for the C–N, C–S and O–H stretching modes indicate the presence of SCN−solvent interactions through the N-end, “free” SCN and the solvent-shared ion pairs as potassium thiocyanate is added to the methanol–water mixtures. The relative changes corresponding to H–O–H bending and C–O stretching frequencies indicate that K+ is preferentially solvated by water in these solvent mixtures. The appearance and increase of the intensity of a broad band at ≈940 cm−1 upon salt addition was attributed to the SCN–H2O–K+ solvent-shared ion pairs. No Raman spectral evidence for K+(H2O)n species was observed. The preferential solvation of K+ and SCN in the methanol−water mixtures was verified by the application of the Kirkwood−Buff theory of solutions. This theory confirms that K+ is strongly preferentially solvated by water, whereas SCN is preferentially solvated by the methanol component.  相似文献   
102.
The dipole dynamics and α-relaxation behaviour of polyvinyl chloride PVC, poly(ethylene-co-vinyl-acetate) EVA70 and blend of them EVA70/PVC have been investigated by differential scanning calorimetry (DSC) and dielectric relaxation spectroscopy (DRS). The differential scanning calorimetry (DSC) thermograms measured on samples show a single glass transition in the analysed temperature range. These three polymers are wholly amorphous and pure PVC and pure EVA70 are miscible in the ratio 1:1. The glass transition temperature Tg decreases significantly with presence of EVA70. Furthermore, the values of apparent activation energies for molecular motions at the α-relaxation and the values of fragility index have also been determined for each sample using Moynihan expression for DSC results and Vogel-Fulcher-Tammann-Hesse (VFTH) form for DRS results. It is shown a large dependence of all the values of these parameters with the content of EVA70. Comparing these three polymers, we found that the more fragile glass forming liquid is the PVC. Fragility decreases drastically with EVA70 content. EVA70 and EVA70/PVC blend exhibit practically the same behaviour. The effect of inter- and intra-molecular interactions on fragility is discussed to explain these variations.  相似文献   
103.
A tutorial on dielectric (relaxation) spectrometry of liquids is given in this article. Some methods of measuring complex (electric) permittivity spectra are briefly described. Results for water are presented and related to characteristic properties of the liquid structure and to models of the molecular dynamics, particularly as resulting from computer simulation studies. Dielectric spectra for aqueous solutions of low weight electrolytes, polyelectrolytes, small molecules, and polymers are discussed to illustrate effects of kinetic depolarization, structure saturation, as well as positive, negative, and hydrophobic hydration. Reference is also made to fluctuations in the hydrogen bond network of mixtures of water with liquids that are completely miscible with this unique solvent.  相似文献   
104.
A comparative quantum-chemical analysis of the electronic structures and spectroscopic parameters of the cycloalkanes C3H6, C4H8, C5H10, and C6H12 and their silicon analogs Si3H6, Si4H8, Si5H10 and Si6H12 was performed in the framework of the SCF MO LCAO method in the INDO approximation. Qualitative interpretation of “abnormal” ionization potentials and energies of electronic absorption spectra of cyclopolysilanes has been given. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1105–1108, June, 1997.  相似文献   
105.
The vertical ionization potentials of bis(-allyl)nickel (see (1) in Fig. 1) are calculated by means of the Green's function approach within a semiempirical INDO extension to the first transition metal series. The computed ionization potentials are in good agreement with an experimentally deduced assignment. In contrast to earlier theoretical and experimental studies, the 7a u () level is predicted on top of the levels corresponding to the Ni 3d orbitals. Our approach leads to a complete assignment of the PE spectrum of (1) in the outer valence region.  相似文献   
106.
羟基取代烷基苯磺酸盐界面扩张粘弹性质   总被引:1,自引:0,他引:1  
研究了2-羟基-3,5-二癸基苯磺酸钠(C10C10OHphSO3Na)表面和正癸烷-水界面上的扩张粘弹性质, 考察了平衡时间对界面性质的影响. 研究结果表明, 羟基取代烷基苯磺酸钠具有十分特异的界面性质, 其扩张模量比一般表面活性剂大一个数量级, 达到平衡的时间较长, 形成的界面膜弹性较大. 界面张力弛豫测定结果表明, 平衡时界面上存在特征时间长达103 s的慢过程. 上述实验结果可能是由于羟基间形成氢键造成的.  相似文献   
107.
Polystyrenes with different concentrations of side groups with cyano groups were prepared and complex dielectric constants were measured in the range of the glass transition temperature and the frequency range of 10–2–107 Hz.The GPC and DSC measurements showed that the molecular weight of these polystyrenes was about 10500 g/mole and the glass transition temperatures were 89.5°C for all samples.The dielectric relaxation spectra obtained for the side group polystyrene labels and also the chain-end polystyrene labels prepared before [9] were analyzed to find out the degree of coupling of the chain-end and side-group labels with the cooperative reorientation of the polymeric matrix. The analysis of the spectra was carried out using the analysis method developed by Mansour and Stoll [6].The results obtained showed that both end- and side-group labels are strongly coupled with the segmental reorientation and relax with relaxation times longer than that of the segments.The value of logf m = (logf m(label)) – logf m(matrix)) was obtained from the recently designed comparison diagram suggested by Mansour and Stoll [6, 14]. The value of logf m depends on the label length in the case of chain-end labels.It was surprising to find that the side groups relax slower than the segments by only 0.9 decades. These results obtained implied that the label relaxes through a multistep relaxation mechanism of the side and end groups and not through a diffusion mechanism of the whole chain. In addition, the effective lengths of the relaxing units were determined using the empirical equation obtained before in the case of rodlike molecules in polyisoprene [7].  相似文献   
108.
Chemical reactions occurring at the mineral–water interface are controlled by an interfacial layer, nanometers thick, whose properties may deviate from those of the respective bulk mineral and water phases. The molecular-scale structure of this interfacial layer, however, is poorly constrained, and correlations between macroscopic phenomena and molecular-scale processes remain speculative. The application of high-resolution X-ray scattering techniques has begun to provide substantial new insights into the molecular-scale structure of the mineral–water interface. In this review, we describe the characteristics of synchrotron-based X-ray scattering techniques that make them uniquely powerful probes of mineral–water interfacial structures and discuss the new insights that have been derived from their application. In particular, we focus on efforts to understand the structure and distribution of interfacial water as well as their dependence on substrate properties for major mineral classes including oxides, carbonates, sulfates, phosphates, silicates, halides and chromates. We compare these X-ray scattering results with those from other structural and spectroscopic techniques and integrate these to provide a conceptual framework upon which to base an understanding of the systematic variation of mineral–water interfacial structures.  相似文献   
109.
以滑移-溶解-再钝化模型为基础,推导出应力腐蚀裂纹扩展速率与裂尖应变速率和电位之间的理论公式.计算表明,在裂纹扩展速率与裂尖应变速率的关系曲线中有两个特征区域.裂纹扩展速率在区域I随裂尖应变速率增加而增大,而在区域II不随裂尖应变速率的改变而变化.用慢应变速率拉伸技术(SSRT)测量了304L不锈钢的裂纹增长速率.当电位控制在区域II的阳极区时,理论计算的裂纹扩展速率与实验得到的结果比较吻合.  相似文献   
110.
Proton relaxation rates of the solvent water in NaClO4, NaBF4, LiClO4, and NiBF4 solutions together with some self-diffusion coefficients are reported and interpreted in terms of structure-breaking effects.19F relaxation rates in7LiBF4 and6LiBF4 solutions in D2O have been measured, and the relaxation contribution caused by7Li+ has been evaluated to give a cation-anion model pair distribution function.7Li relaxation rates in H2O and D2O are also reported, and conclusions concerning the hydration structure of Li+ have been drawn. The strong relaxation effects caused by the ions BF 4 and ClO 4 on23Na+ and7Li+ have been subjected to a detailed analysis, and combined ion-solvent encounter configurations are presented which yield an electric field gradient strong enough to cause the observed effect.Part 1 was presented at the Faraday Discussion Ion-Ion and Ion-Solvent Interaction, Oxford, September 1977 (see ref. 1).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号