首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1836篇
  免费   213篇
  国内免费   160篇
化学   834篇
晶体学   49篇
力学   8篇
综合类   4篇
数学   64篇
物理学   1250篇
  2024年   2篇
  2023年   24篇
  2022年   24篇
  2021年   43篇
  2020年   82篇
  2019年   44篇
  2018年   54篇
  2017年   51篇
  2016年   87篇
  2015年   68篇
  2014年   115篇
  2013年   141篇
  2012年   101篇
  2011年   162篇
  2010年   117篇
  2009年   136篇
  2008年   147篇
  2007年   144篇
  2006年   131篇
  2005年   83篇
  2004年   53篇
  2003年   97篇
  2002年   53篇
  2001年   77篇
  2000年   36篇
  1999年   24篇
  1998年   35篇
  1997年   11篇
  1996年   23篇
  1995年   7篇
  1994年   7篇
  1993年   2篇
  1992年   4篇
  1991年   8篇
  1990年   6篇
  1987年   1篇
  1985年   4篇
  1981年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有2209条查询结果,搜索用时 161 毫秒
61.
T. Kuroda  F. Minami  S. Seto 《Phase Transitions》2013,86(7-8):1019-1026
Time-resolved magneto photoluminescence in a diluted magnetic semiconductor Cd 0.9 Mn 0.1 Te has been carried out with varying exciton density from 10 14 to 10 19 cm m 3 . The reduction of the Zeeman shift and that of the magnetic polaron energy was found under strong photoexcitation. The spectral feature is interpreted in terms of the heating of the manganese spin subsystem. Polarization dependence of the spin heating is observed for the first time, revealing the contribution of the spin flip between excitons and magnetic ions to the heating process.  相似文献   
62.
63.
The study of electronic and chemical properties of semiconductor oxides is motivated by their several applications. In particular, tin oxide is widely used as a solid state gas sensor material. In this regard, the defect structure has been proposed to be crucial in determining the resulting film conductivity and then its sensitivity. Here, the characteristics of vacancy-like defects in nanocrystalline commercial high-purity tin oxide powders and the influence of the annealing treatment under different atmospheres are presented. Specifically, SnO2 nanopowders were annealed at 330 °C under three different types of atmospheres: inert (vacuum), oxidative (oxygen) and reductive (hydrogen). The obtained experimental results are discussed in terms of the vacancy-like defects detected, shedding light to the basic conduction mechanisms, which are responsible for gas detection.  相似文献   
64.
65.
Water‐dispersible, polymer‐wrapped nanocrystals are highly sought after for use in biology and chemistry, from nanomedicine to catalysis. The hydrophobicity of their native ligand shell, however, is a significant barrier to their aqueous transfer as single particles. Ligand exchange with hydrophilic small molecules or, alternatively, wrapping over native ligands with amphiphilic polymers is widely employed for aqueous transfer; however, purification can be quite cumbersome. We report here a general two‐step method whereby reactive stripping of native ligands is first carried out using trialkyloxonium salts to reveal a bare nanocrystal surface. This is followed by chemically directed immobilization of a hydrophilic polymer coating. Polyacrylic acids, with side‐chain grafts or functional end groups, were found to be extremely versatile in this regard. The resulting polymer‐wrapped nanocrystal dispersions retained much of the compact size of their bare nanocrystal precursors, highlighting the unique role of monomer side‐chain functionality to serve as effective, conformal ligation motifs. As such, they are well poised for applications where tailored chemical functionality at the nanocrystal's periphery or improved access to their surfaces is desirable. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
66.
Delafossite CuFeO2 oxide was synthesized by a hydrothermal technique using Cu2O and FeOOH as precursors with the addition of fused NaOH as mineralizer. The amount of rhombohedral and hexagonal delafossite phase formed depends on the synthesis time lapses between 2 and 5 days and on the NaOH concentration. The compounds obtained were analyzed with Raman Spectroscopy, X-Ray Diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) in order to obtain their morphological and structural properties. Optical behavior was studied by UV–vis Spectroscopy and gas adsorption measured with a Quartz-Crystal Microbalance (QCM). Our results show that this type of hydrothermal synthesis is capable of recreating the delafossite-type structure of copper-iron oxide and produces a high yield of material with the right stoichiometry. The highest uptake of carbon dioxide is observed on the sample with the highest ratio between rhombohedral and hexagonal delafossite phase.  相似文献   
67.
In this paper, a model to calculate the dark current of quantum well infrared photodetectors at high-temperature regime is presented. The model is derived from a positive-definite quantum probability-flux and considers thermionic emission and thermally-assisted tunnelling as mechanisms of dark current generation. Its main input data are the wave functions obtained by time-independent Schrodinger equation and it does not require empirical parameters related to the transport of carriers. By means of this model, the dark current of quantum well infrared photodetectors at high-temperature regime is investigated with respect to the temperature, the barrier width, the applied electric field and the position of the first excited state. The theoretical results are compared with experimental data obtained from lattice-matched InAlAs/InGaAs, InGaAsP/InP on InP substrate and AlGaAs/GaAs structures with rectangular wells and symmetric barriers, whose absorption peak wavelengths range from MWIR to VLWIR. The corresponding results are in a good agreement with experimental data at different temperatures and at a wide range of applied electric field.  相似文献   
68.
Polyoxometalates (POMs), as inorganic ligands, can endow metal nanocrystals (NCs) with unique reactivities on account of their characteristic redox properties. In the present work, we present a facile POM‐mediated one‐pot aqueous synthesis method for the production of single‐crystalline Pd NCs with controlled shapes and sizes. The POMs could function as both reducing and stabilizing agents in the formation of NCs, and thus gave a fine control over the nucleation and growth kinetics of NCs. The prepared POM‐stabilized Pd NCs exhibited excellent catalytic activity and stability for electrocatalytic (formic acid oxidation) and catalytic (Suzuki coupling) reactions compared to Pd NCs prepared without the POMs. This shows that the POMs play a pivotal role in determining the catalytic performance, as well as the growth, of NCs. We envision that the present approach can offer a convenient way to develop efficient NC‐based catalyst systems.  相似文献   
69.
Battal Gazi Yalcin 《哲学杂志》2016,96(21):2280-2299
The current study aimed to comprehensively investigate structural, electronic, optical and transport properties of quaternary semiconductor CuZn2AS4 (CZAS; A=Al, Ga and In) nanocrystals (NCs). Based on energy considerations, the stannite structure (I-42m; No. 121) is found to be more stable than the kesterite (I-4; No.82) and wurtzite (P63mc; No.186) type structures. By means of hybrid functional calculations, these nanocrystals have direct band gap of 0.81–1.71 eV with a high absorption coefficient of >104 cm?1, which are well-suited for use in solar energy-conversion applications. Some of the latest advances in applications of these nanocrystals in thermoelectric applications are also highlighted in the current study. It is observed that transport coefficients of these materials are found to be nearly direction independent and isotropic. All three samples are p-type conductors at room temperature. Especially, the Seebeck coefficient of CuZn2AlS4 is even larger than that of CuZn2GaS4 and CuZn2InS4 under the studied carrier concentration and temperature region. The maximum figure of merit (ZT) reaches 0.982 (0.977), 0.984 (0.974) and 0.53 (0.955) for p-type (n-type) CuZn2AlS4, CuZn2GaS4, and CuZn2InS4, respectively, at 300 K. The high Seebeck coefficients, high figure of merit and low thermal conductivities make these systems good candidates for high-efficiency thermoelectric conversion applications.  相似文献   
70.
Molecule‐based micro‐/nanomaterials have attracted considerable attention because their properties can vary greatly from the corresponding macro‐sized bulk systems. Recently, the construction of multicomponent molecular solids based on crystal engineering principles has emerged as a promising alternative way to develop micro‐/nanomaterials. Unlike single‐component materials, the resulting multicomponent systems offer the advantages of tunable composition, and adjustable molecular arrangement, and intermolecular interactions within their solid states. The study of these materials also supplies insight into how the crystal structure, molecular components, and micro‐/nanoscale effects can influence the performance of molecular materials. In this review, we describe recent advances and current directions in the assembly and applications of crystalline multicomponent micro‐/nanostructures. Firstly, the design strategies for multicomponent systems based on molecular recognition and crystal engineering principles are introduced. Attention is then focused on the methods of fabrication of low‐dimensional multicomponent micro‐/nanostructures. Their new applications are also outlined. Finally, we briefly discuss perspectives for the further development of these molecular crystalline micro‐/nanomaterials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号