首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   236篇
  免费   7篇
  国内免费   82篇
化学   254篇
晶体学   1篇
力学   3篇
物理学   67篇
  2024年   2篇
  2023年   18篇
  2022年   16篇
  2021年   25篇
  2020年   29篇
  2019年   14篇
  2018年   11篇
  2017年   22篇
  2016年   16篇
  2015年   12篇
  2014年   15篇
  2013年   12篇
  2012年   12篇
  2011年   19篇
  2010年   10篇
  2009年   17篇
  2008年   18篇
  2007年   15篇
  2006年   15篇
  2005年   7篇
  2004年   7篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   4篇
  1994年   1篇
  1985年   1篇
排序方式: 共有325条查询结果,搜索用时 62 毫秒
91.
A nanocomposite UV-visible light-responsive multiwalled carbon nanotube (MWCNT)/titanium dioxide(TiO2) nanophotocatalyst was successfully synthesized by a modified sol-gel method using titanium isopropoxide and functionalized MWCNTs as the starting precursors. The photocatalytic activity of the TiO2 and the nanohybrid material was investigated through the photodegradation of Reactive Black 5 dye under ultraviolet light irradiation. X-ray diffraction analysis indicated that anatase phase was obtained for both the pure TiO2 and the MWCNT/TiO2 composite, while Raman spectroscopy confirmed the presence of MWCNTs in the composite. Field emission scanning elec-tron microscopy revealed that TiO2 nanoparticles with an individual diameter of about 10–20 nm were coated on the surface of the MWCNTs. The specific surface areas of the samples were found to be 80 and 181 m2/g for the pure TiO2 and MWCNT/TiO2, respectively. As a result, MWCNT/TiO2 showed better photocatalytic performance than pure TiO2 because the high surface area of MWCNTs enabled them to function as good electron acceptors for the retardation of electron-hole pair recombination.  相似文献   
92.
For the first time, nanocrystalline photocatalysts of spinel MgFe2O4, ZnFe2O4 and orthorhombic CaFe2O4 oxides were synthesized (at low temperature ∼973 K) by microwave sintering, in one sixtieth of the time required to that of the conventional method. A significantly improved crystallinity was obtained for the samples irradiated for longer duration of time (∼10-100 min). The theoretically computed electronic structure of the MFe2O4 (M: Ca, Zn, Mg) systems was respectively correlated with the experimental results obtained from their structural and photocatalytic characterization. The photocatalytic performance was found to be affected by surface area and crystallinity of the photocatalyst. The density functional theory (DFT) calculations of MFe2O4 lattices revealed that M-ion controllably affects the density of sates of the Fe-d orbitals near the Fermi level. Consequently they play an important role in determining the band-energetics and thus the visible light photocatalytic activity for methylene blue degradation.  相似文献   
93.
Natural zeolite supported Fe3+-TiO2 photocatalysts were synthesized for the sake of improving the recovery and photocatalytic efficiency of TiO2. The as-prepared materials were characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflection spectroscopy (UV-vis DRS), scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDX). Methyl orange was used to estimate the photocatalytic activity of the samples. The results showed that zeolite inhibited the growth of TiO2 crystallite sizes. The Fe3+ concentration played an important role on the microstructure and photocatalytic activity of the samples. The iron ions could diffuse into TiO2 lattice to the form Fe-O-Ti bond and gave TiO2 the capacity to absorb light at lower energy levels. The photocatalytic activity of the samples could be enhanced as appropriate dosages of Fe3+ were doped.  相似文献   
94.
The present work shows the photocatalytic degradation of nitrobenzene (NB) using Fe3O4 magnetic nanoparticles (MNP) as a photocatalyst in the presence of UV light. The MNP were synthesized by an ultrasonic-assisted reverse co-precipitation (US-RP) method using FeSO4, FeCl3 and NH4OH as precursors. The prepared nanoparticles were characterized by UV–vis spectroscopy, attenuated total reflectance Fourier transformed infrared spectroscopy (ATR FT-IR), Raman spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Dynamic light scattering (DLS), Zeta potential, Vibrating sample magnetometer (VSM) and Magnetic thermogravimetric analysis (MTGA). The successive decrement in the absorbance at 265 nm shows the effective decrease in NB concentration measured by UV–vis spectroscopy. The reaction intermediates detected by gas chromatography/mass spectrum (GC/MS) were 2-nitrophenol (2-NPh), 3-nitrophenol (3-NPh) and 4-nitrophenol (4-NPh). The prepared MNP showed an optimal NB degradation at an initial pH of 2 and 100 ppm of the photocatalyst.  相似文献   
95.
《Arabian Journal of Chemistry》2020,13(11):8411-8423
The current study fabricated novel lead selenide nanoparticles (PbSe NPs) by a simple biological benign process with Trichoderma sp. WL-Go. Ultraviolet–visible spectroscopy (UV–vis), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transfer infra-red (FTIR) spectroscopic analysis, Raman spectroscopy and Photoluminescence (PL) were used to characterize the physicochemical properties of the fabricated NPs. Synthesis at pH 8 with 0.5 g biomass of strain WL-Go and (1:1) mM of SeO2: Pb(NO3)2 were the optimal synthesis conditions to achieving 10–30 nm cubic faced centered NPs. The PbSe NPs served as catalyst for investigating the antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and photodegradation ability of rhodamine B dye (10 mg/L). The results indicated that the NPs could eliminate up to 88.60% of free radicals after adding 600 g/mL NPs and could photodegrade 82% of rhodamine B in 30 min. Thus, this study provides new knowledge and strategies for the future use of an environmentally benign bio- catalytic PbSe NPs to efficiently eliminate free radicals and in treatment of persistent organic pollutants in wastewaters.  相似文献   
96.
《Arabian Journal of Chemistry》2020,13(11):7637-7651
Influence of nitrogen precursors urea, semicarbazide and N,N’-dimethyl urea on the photocatalytic activity of the N-doped TiO2 were studied by a simple decomposition method. The nano N-TiO2 catalysts were synthesized via two different modified approaches by calcination at 500 °C. The synthesized samples were characterized by IR, UV-DRS, Raman, TG-DTA, XRD, EDX, XPS, SEM, TEM and BET analysis. Of the synthesized six samples of N-TiO2 five samples showed better photocatalytic activity towards direct sunlight photo-degradation of methylene blue (MB) and rhodamine B (RhB) than Degussa P25. The catalysts obtained using semicarbazide samples F3 and F4 having large surface area of 76 and 85.8 m2/g displayed maximum photocatalytic activity. The sample F4 was 1.5 times more active than Degussa P25 for the decolourisation of MB and 1.9 times more active for the decolourisation of RhB. The presence of nitrogen, large surface area and coupling of rutile-anatase phases were found to be the main responsible factors for the enhanced photocatalytic activity. The exclusive formation of the anatase phase in the case of urea precursor is attributed to the slow evaporation of urea due to the formation of melamine derived products. The calcination temperature is the deciding factor responsible for the photocatalytic activity of the N-TiO2 samples prepared from precursors which can potentially form the melamine and its oligomerized products on the surface of TiO2.  相似文献   
97.
A new oxynitride Ruddlesden-Popper phase K1.6Ca2Nb3O9.4N0.6.1.1H2O was synthesized by the topochemical ammonolysis reaction at 700 °C from the oxide Dion-Jacobson phase KCa2Nb3O10 in the presence of K2CO3. The oxynitride showed good stability with a little loss of nitrogen, even after a few months of exposure to air. Its crystal structure was solved by Rietveld refinement of X-ray powder diffraction data in space group P4/mmm and considering a two-phase mixture, due to the difference in the degree of hydration, with a = 3.894(2) Å and c = 17.90(8) Å for the most hydrated phase and a = 3.927(6) Å and c = 17.09(2) Å for the less one. Optical band gaps were measured by diffuse reflectance in the UV-Visible range indicating a red shift of Eg to the visible region. The oxynitride layered perovskite was then protonated and exfoliated into nanosheets. TEM images and SAED patterns of the nanosheets proved that exfoliation was successful, showing lattice parameters quite compatible with the Rietveld refinement.  相似文献   
98.
High aspect ratio cobalt doped ZnO nanowires showing strong photocatalytic activity and moderate ferromagnetic behaviour were successfully synthesized using a solvothermal method and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), vibrating sample magnetometry (VSM) and UV–visible absorption spectroscopy. The photocatalytic activities evaluated for visible light driven degradation of an aqueous methylene orange (MO) solution were higher than for Co doped ZnO nanoparticles at the same doping level and synthesized by the same synthesis route. The rate constant for MO visible light photocatalytic degradation was 1.9·10−3 min−1 in case of nanoparticles and 4.2·10−3 min−1 in case of nanowires. We observe strongly enhanced visible light photocatalytic activity for moderate Co doping levels, with an optimum at a composition of Zn0.95Co0.05O. The enhanced photocatalytic activities of Co doped ZnO nanowires were attributed to the combined effects of enhanced visible light absorption at the Co sites in ZnO nanowires, and improved separation efficiency of photogenerated charge carriers at optimal Co doping.  相似文献   
99.
Fluorine-modified TiO2 nan oparticles were synthesized by introducing TiF4 as a fluorine source either before or after the sufficient hydrolysis and condensation of Ti(OEt)4. The photocatalytic activity of the fluorine-modified catalysts was found to be greatly affected by the fluorine position in TiO2 nanoparticles. When TiF4 and Ti(OEt)4 hydrolyzed with synchronization, the fluorine tended to be doped in the lattice. The formation of Ti3+ defects could result in charge recombination in bulk and bring down the photocatalytic activity. In contrast, if TiF4 was introduced after the sufficient hydrolysis and condensation of Ti(OEt)4. Ti−F bonds could exist mainly on the TiO2 particles surface, which not only prevented the growth of anatase crystals but also facilitated the transfer of organic compounds from solution to catalyst surface by reducing the hydrophilic properties.  相似文献   
100.
采用共沉淀法制备了Cd0.53Zn0.47S固溶体光催化剂, 以光还原沉积法负载Pt, 水解正硅酸乙酯负载SiO2, 得到了负载Pt的SiO2复合光催化剂SiO2/Pt-Cd0.53Zn0.47S, 并研究了水解pH值对其催化活性的影响. 通过X射线衍射(XRD)、比表面(BET)、荧光光谱(PL)、紫外-可见漫反射光谱(UV-Vis DRS)和扫描电镜(SEM)等测试技术对催化剂进行了表征. 结果表明, SiO2复合光催化剂有效地抑制了Pt-Cd0.53Zn0.47S光催化过程中发生的光腐蚀和粒子团聚, 促使光生电子和空穴分离, 从而使可见光制氢催化剂活性和稳定性大大提高.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号