首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   236篇
  免费   7篇
  国内免费   82篇
化学   254篇
晶体学   1篇
力学   3篇
物理学   67篇
  2024年   2篇
  2023年   18篇
  2022年   16篇
  2021年   25篇
  2020年   29篇
  2019年   14篇
  2018年   11篇
  2017年   22篇
  2016年   16篇
  2015年   12篇
  2014年   15篇
  2013年   12篇
  2012年   12篇
  2011年   19篇
  2010年   10篇
  2009年   17篇
  2008年   18篇
  2007年   15篇
  2006年   15篇
  2005年   7篇
  2004年   7篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   4篇
  1994年   1篇
  1985年   1篇
排序方式: 共有325条查询结果,搜索用时 203 毫秒
131.
Water could be decomposed into hydrogen and oxygen over Ga-modified ZSM-5 zeolite under UV irradiation. The photocatalytic activity was elevated significantly by supporting the gallium species and was sensitive to the loading amount of gallium species on the ZSM-5 zeolites.  相似文献   
132.
Nanosize neodymium doped titania has been prepared by hydrolysis of titanium oxychloride followed by peptisation under acidic condition. The anatase to rutile phase transformation temperature was found to increase by 150 °C as a result of neodymium doping. The doped sample shows 10 times higher surface area than the undoped one after calcining at 700 °C. All the samples calcined at 500, 600 and 700 °C show type IV isotherm, which is characteristic of mesoporous material. The pore size distribution curves also show that the pores are in mesoporous region. Further, the neodymium doped titania shows increased photoactivity than the undoped titania with respect to decomposition of methylene blue when subjected to UV light. The transmission electron micrograph indicates that a nanocrystalline doped titania is obtained through the present method. The effect of neodymium doping on the anatase phase stability, specific surface area and photoactivity are reported.  相似文献   
133.
This study demonstrates a simple route for the synthesis of nanocrystalline N doped rutile titania by calcination of acidified TiCl3 in presence of urea. Urea was used as a source of nitrogen. The N doped rutile titania was yellow in colour and showed excellent photocatalytic activity in sunlight.  相似文献   
134.
Synthesizing a stable and efficient photocatalyst has been the most important research goal up to now. Owing to the dominant performance of g-C3N4 (graphitized carbonitride), an ordered assemble of a composite photocatalyst, Zn-Ni-P@g-C3N4, was successfully designed and controllably prepared for highly efficient photocatalytic H2 evolution. The electron transport routes were successfully adjusted and the H2 evolution was greatly improved. The maximum amount of H2 evolved reached about 531.2 μmol for 5 h over Zn-Ni-P@g-C3N4 photocatalyst with a molar ratio of Zn to Ni of 1:3 under illumination of 5 W LED white light (wavelength 420 nm). The H2 evolution rate was 54.7 times higher than that over pure g-C3N4. Moreover, no obvious reduction in the photocatalytic activity was observed even after 4 cycles of H2 production for 5 h. This synergistically increased effect was confirmed through the results of characterizations such as XRD, TEM, SEM, XPS, N2 adsorption, UV-vis DRS, transient photocurrent, FT-IR, transient fluorescence, and Mott-Schottky studies. These studies showed that the Zn-Ni-P nanoparticles modified on g-C3N4 provide more active sites and improve the efficiency of photogenerated charge separation. In addition, the possible mechanism of photocatalytic H2 production is proposed.  相似文献   
135.
The WO3/WS2 nanostructures were successfully prepared using a two-step hydrothermal/gas phase method. The physical properties of the nanostructures were characterized using XRD, SEM, TEM, UV–visible spectroscopy. The WO3/WS2 nanostructures obtained were coexistence of WO3 and WS2 in the same particle. The WO3/WS2 nanostructures contained a wide and intensive absorption in the UV–visible light region of 245–750 nm, which showed that the WO3/WS2 nanostructures may have a potential application as an UV–visible photocatalyst.  相似文献   
136.
Two-dimensional (2D) transition metal dichalcogenides (TMDs), a rising star in the post-graphene era, are fundamentally and technologically intriguing for photocatalysis. Their extraordinary electronic, optical, and chemical properties endow them as promising materials for effectively harvesting light and catalyzing the redox reaction in photocatalysis. Here, we present a tutorial-style review of the field of 2D TMDs for photocatalysis to educate researchers (especially the new-comers), which begins with a brief introduction of the fundamentals of 2D TMDs and photocatalysis along with the synthesis of this type of material, then look deeply into the merits of 2D TMDs as co-catalysts and active photocatalysts, followed by an overview of the challenges and corresponding strategies of 2D TMDs for photocatalysis, and finally look ahead this topic.  相似文献   
137.
[1.1.1]Propellane, which is structurally simple and compact, exhibits promising potential for the synthesis of disubstituted straight-shaped bicyclo[1.1.1]pentane (BCP) compounds by manipulation of its highly reactive internal C−C bond. BCPs are considered to be isosteres of 1,4-disubstituted benzenes, which have found broad applications in the areas of functional molecules and drug discovery. The internal C−C single bond of [1.1.1]propellane is regarded as a charge-shift bond, which can be readily cleaved by radical means to construct BCPs. We herein report a novel synthetic method for (un)symmetric diphosphines based on the BCP motif, which can be interpreted as isosteres of 1,4-bis(diphenylphosphino)benzenes. The obtained BCP-diphosphine derivatives were used to generate a straight-shaped Au complex and an Eu-based coordination polymer.  相似文献   
138.
Developing low-cost and efficient photocatalysts to convert CO2 into valuable fuels is desirable to realize a carbon-neutral society. In this work, we report that polymer dots (Pdots) of poly[(9,9′-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-thiadiazole)] (PFBT), without adding any extra co-catalyst, can photocatalyze reduction of CO2 into CO in aqueous solution, rendering a CO production rate of 57 μmol g−1 h−1 with a detectable selectivity of up to 100 %. After 5 cycles of CO2 re-purging experiments, no distinct decline in CO amount and reaction rate was observed, indicating the promising photocatalytic stability of PFBT Pdots in the photocatalytic CO2 reduction reaction. A mechanistic study reveals that photoexcited PFBT Pdots are reduced by sacrificial donor first, then the reduced PFBT Pdots can bind CO2 and reduce it into CO via their intrinsic active sites. This work highlights the application of organic Pdots for CO2 reduction in aqueous solution, which therefore provides a strategy to develop highly efficient and environmentally friendly nanoparticulate photocatalysts for CO2 reduction.  相似文献   
139.
Overall water splitting (OWS) using semiconductor photocatalysts is a promising method for solar fuel production. Achieving a high quantum efficiency is one of the most important prerequisites for photocatalysts to realize high solar-to-fuel efficiency. In a recent study (Nature 2020 , 58, 411–414), a quantum efficiency of almost 100 % has been achieved in an aluminum-doped strontium titanate (SrTiO3 : Al) photocatalyst. Herein, using the SrTiO3 : Al as a model photocatalyst, we reveal the criteria for efficient photocatalytic water splitting by investigating the carrier dynamics through a comprehensive photoluminescence study. It is found that the Al doping suppresses the generation of Ti3+ recombination centers in SrTiO3, the surface band bending facilitates charge separation, and the in situ photo-deposited Rh/Cr2O3 and CoOOH co-catalysts render efficient charge extraction. By suppressing photocarrier recombination and establishing a facile charge separation and extraction mechanism, high quantum efficiency can be achieved even on photocatalysts with a very short (sub-ns) intrinsic photocarrier lifetime, challenging the belief that a long carrier lifetime is a fundamental requirement. Our findings could provide guidance on the design of OWS photocatalysts toward more efficient solar-to-fuel conversion.  相似文献   
140.
The layered compound of lead bismuth oxybromide PbBiO2Br, prepared by conventional solid-state reaction method, has an optical band gap of 2.3 eV, and possesses a good visible-light-response ability. The references, PbBi2Nb2O9, TiO2−xNx, BiOBr and BiOI0.8Cl0.2, which are excellent visible-light-response photocatalysts, were applied to comparatively understand the activity of PbBiO2Br. Degradation of methyl orange and methylene blue was used to evaluate photocatalytic activity. The results show that PbBiO2Br is more photocatalytically active than PbBi2Nb2O9, TiO2−xNx and BiOBr under visible light.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号