首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   24篇
  国内免费   4篇
化学   33篇
晶体学   20篇
力学   2篇
综合类   1篇
数学   1篇
物理学   80篇
  2022年   2篇
  2021年   6篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   7篇
  2015年   3篇
  2014年   4篇
  2013年   5篇
  2012年   3篇
  2011年   8篇
  2010年   7篇
  2009年   10篇
  2008年   10篇
  2007年   9篇
  2006年   15篇
  2005年   7篇
  2004年   7篇
  2003年   4篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
排序方式: 共有137条查询结果,搜索用时 15 毫秒
101.
Films synthesized by plasma enhanced chemical vapor deposition from a mixture of octamethyltrisiloxane and hexamethylcyclotrisiloxane have been studied regarding to their preparation, deposition, chemical composition and membrane properties according to hydrocarbon vapor selectivities of solubility.

Composition of the plasma glow discharge in neutral species has been studied by mass spectrometry whereas structural information of the deposited membranes has been extracted from Fourier transform infra-red (FTIR) spectroscopy. In the deposition conditions presented here leading to plasma-polymerized films, heavy radicals mostly contribute to their growth and their chemical composition. Depending on the precursors ratio in the plasma, i.e. linear and cyclic clusters ratio in the deposited material, solubility of selectivity against nitrogen of the deposited material varies from 50 up to 150 for hexane vapor.  相似文献   

102.
Hydrogenated amorphous silicon nitride (a-SiNx:H) thin films have been deposited through the green chemistry route using silane (SiH4) and nitrogen (N2) as process gases with SiH4 flow being variable and N2 flow being constant without the use of pollutant and corrosive ammonia (NH3) by the plasma-enhanced chemical vapor deposition technique at 13.56 MHz. Fourier transform infrared spectroscopy analysis shows various possible vibrational modes of Si-H, Si-N, and N-H bonds present in the film. Raman spectroscopy is performed on these samples to calculate volume fractions corresponding to amorphous phases present in the a-SiNx:H films. The refractive index (η) values are calculated using Swanepoel's method, which are in the range of 2.89 to 3.17. The thickness of the deposited films has been evaluated using transmission spectra. Absorption coefficient and band gap (E g) values are obtained from optical absorption studies. An increase in the E g and a decrease in the η value have been observed for the samples grown with decreasing SiH4 flow.  相似文献   
103.
The influence of electron impact dissociation of oxygen on neutral chemistry was studied for plasma-enhanced chemical vapor deposition (PECVD) of zinc oxide using oxygen and diethyl zinc. Electron conditions in the reactor were estimated based on simulations of well-known Ar-O2 plasmas, while the majority of the thermal chemistry was abstracted from the combustion literature. A rudimentary model of film growth was developed using the rate of oxygen dissociation as the lone adjustable parameter.n Model results were compared directly with experimental measurements of deposition rates and neutral species densities for a wide range of conditions. Good quantitative agreement between experiments and model were observed as a function of composition and rf power. The system is highly sensitive to the electron impact dissociation of oxygen, which creates the radical pool that drives the majority of the chemistry. The approach detailed here provides a framework for the development of models of oxide PECVD derived from other metalorganic precursors.  相似文献   
104.
Carbon nanowall (CNW) and carbon nanotube (CNT) were prepared as anode materials of lithium-ion batteries. To fabricate a lithium-ion battery, copper (Cu) foil was cleaned using an ultrasonic cleaner in a solvent such as trichloroethylene (TCE) and used as a substrate. CNW and CNT were synthesized on Cu foil using plasma-enhanced chemical vapor deposition (PECVD) and water dispersion, respectively. CNW and CNT were used as anode materials for the lithium-ion battery, while lithium hexafluorophosphate (LiPF6) was used as an electrolyte to fabricate another lithium-ion battery. For the structural analysis of CNW and CNT, field emission scanning electron microscope (FE-SEM) and Raman spectroscopy analysis were performed. The Raman analysis showed that the carbon nanotube in composite material can compensate for the defects of the carbon nanowall. Cyclic voltammetry (CV) was employed for the electrochemical properties of lithium-ion batteries, fabricated by CNW and CNT, respectively. The specific capacity of CNW and CNT were calculated as 62.4 mAh/g and 49.54 mAh/g. The composite material with CNW and CNT having a specific capacity measured at 64.94 mAh/g, delivered the optimal performance.  相似文献   
105.
氮化硅掩膜法制备选择性发射极晶体硅太阳电池   总被引:1,自引:0,他引:1  
本文采用等离子增强化学气相沉积的方法在硅片表面镀一层约80 nm厚的氮化硅掩膜,然后使用传统的丝网印刷工艺将含有一定量磷酸的腐蚀浆料印刷在氮化硅掩膜表面,腐蚀出电极图形,经过三氯氧磷液态源扩散完成重扩,去除氮化硅掩膜后进行浅扩最终实现选择性发射极.丝网印刷腐蚀浆料开窗相对于激光熔融、等离子刻蚀和光刻等方法,具有高的产量、设备投资和运营成本低等优势,容易在现有生产线上实现.最后对比了选择性发射极晶体硅太阳电池和常规太阳电池的电性能和光谱响应,制备的选择性发射极晶体硅太阳电池的短波响应优于常规晶体硅太阳电池,效率提高了0.3;.  相似文献   
106.
用PECVD在低温衬底上制备类金刚石碳膜   总被引:3,自引:0,他引:3       下载免费PDF全文
本文报道用 RF PECVD在低温衬底上制备了类金刚石碳(DLC)膜.研究了氢稀释、气体压力和 RF 功率对薄膜性质的影响. 用光透射率、红外吸收谱和小角度X射线衍射谱分析了DLC膜的结构和光学性质.结果表明,这样制备的DLC膜是无定形态的,包含了大量的C-H键,具有良好的透明性.厚度为230nm的DLC膜在480nm后的可见光区和近红外区的透过率大于83;,所导出的Tauc光学带隙在2.7eV和3.7eV之间.本文还探讨了应用这种DLC膜作为二次电子发射材料的可能性.  相似文献   
107.
本文报道了在廉价的颗粒硅带上用PECVD法并两次引入铝的工艺制备多晶硅薄膜.第一次引入铝是为了去除薄膜上过多的杂质;第二次引入铝是为了实现低温诱导结晶.通过对薄膜样品的拉曼谱和X射线衍射(XRD)谱分析,我们认为金属低温诱导结晶成功与否跟诱导前薄膜的结构密切相关.采用该工艺成功地制备了结晶度92;左右、可应用于太阳能电池的高纯优质多晶硅薄膜.  相似文献   
108.
采用等离子增强化学气相沉积(PECVD)系统,以乙硅烷和氢气为气源,石英玻璃和单晶硅片为衬底制备了氢化非晶硅(a-Si∶ H)薄膜.采用扫描电子显微镜、X-射线衍射仪、台阶仪、紫外可见分光光度计、傅里叶变换红外光谱仪和电子能谱仪等分别表征了a-Si∶H薄膜的表面形貌、结晶特性、沉积速率,光学带隙,键合结构和Si化合态等特性.结果表明:随着衬底温度的增加,a-Si∶H薄膜表面的颗粒尺寸减小,均匀性增加,沉积速率则逐渐降低;衬底温度从80℃增加到130℃时,光学带隙显著增加,而在130℃至230℃范围内,光学带隙基本不随衬底温度变化;以SiH键对应的伸缩振动的相对峰强度逐渐增加,而以SiH2或(SiH2)n键对应的伸缩振动的相对强度逐渐减小;a-Si∶H薄膜中Si0+态的相对含量增加.因此,衬底温度大于130℃有利于制备优质a-Si∶H薄膜,230℃是沉积a-Si∶H薄膜的最佳衬底温度.  相似文献   
109.
We present a methodology to fabricate carbon nanotube based electrodes using plasma enhanced chemical vapour deposition. The metal catalyst nanoparticles used to promote nanotube growth are removed using a water plasma treatment in combination with an acid attack. The final integrated microelectrode-based devices present excellent electrocatalytic properties that make them suitable for electrochemical applications. The presented methodology enables the construction of highly regular and dense vertically aligned carbon nanotube (VACNT) forests that can be confined within the patterned bounds of a desired surface. These VACNT electrodes display very low capacitive currents and are amenable to further chemical modifications.  相似文献   
110.
Pulsed plasma enhanced chemical vapor deposition (pulsed PECVD) and pyrolytic chemical vapor deposition (pyrolyric CVD) of fluorocarbon films from hexafluoropropylene oxide (HFPO) have demonstrated the ability to molecularly design film architecture. Film structures ranging from highly amorphous crosslinked matrices to linear perfluoroalkyl chain crystallites can be established by reducing the modulation frequency of plasma discharge in plasma activated deposition and by eventually shifting mechanistically from an electrically activated to a thermally activated process. X-ray photoelectron spectroscopy (XPS) showed CF2 content increasing from 39–65 mol%. Fourier transform infrared spectroscopy (FTIR) showed an increasing resolution between the symmetric and asymmetric CF2 stretches, and a reduction in the intensity of the amorphous PTFE and CF3 bands. High-resolution solid-state 19F nuclear magnetic resonance spectroscopy (NMR) revealed an increasing CF2CF2CF2 character, with the pyrolytic CVD film much like bulk poly(tetrafluoroethylene) (PTFE). X-ray diffraction (XRD) patterns evidenced an increase in crystallinity, with the pyrolytic CVD film showing a characteristic peak at 2 = 18° representing the (100) plane of the hexagonal structure of crystalline PTFE above 19°C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号