Films synthesized by plasma enhanced chemical vapor deposition from a mixture of octamethyltrisiloxane and hexamethylcyclotrisiloxane have been studied regarding to their preparation, deposition, chemical composition and membrane properties according to hydrocarbon vapor selectivities of solubility.
Composition of the plasma glow discharge in neutral species has been studied by mass spectrometry whereas structural information of the deposited membranes has been extracted from Fourier transform infra-red (FTIR) spectroscopy. In the deposition conditions presented here leading to plasma-polymerized films, heavy radicals mostly contribute to their growth and their chemical composition. Depending on the precursors ratio in the plasma, i.e. linear and cyclic clusters ratio in the deposited material, solubility of selectivity against nitrogen of the deposited material varies from 50 up to 150 for hexane vapor. 相似文献
Hydrogenated amorphous silicon nitride (a-SiNx:H) thin films have been deposited through the green chemistry route using silane (SiH4) and nitrogen (N2) as process gases with SiH4 flow being variable and N2 flow being constant without the use of pollutant and corrosive ammonia (NH3) by the plasma-enhanced chemical vapor deposition technique at 13.56 MHz. Fourier transform infrared spectroscopy analysis shows various possible vibrational modes of Si-H, Si-N, and N-H bonds present in the film. Raman spectroscopy is performed on these samples to calculate volume fractions corresponding to amorphous phases present in the a-SiNx:H films. The refractive index (η) values are calculated using Swanepoel's method, which are in the range of 2.89 to 3.17. The thickness of the deposited films has been evaluated using transmission spectra. Absorption coefficient and band gap (Eg) values are obtained from optical absorption studies. An increase in the Eg and a decrease in the η value have been observed for the samples grown with decreasing SiH4 flow. 相似文献
The influence of electron impact dissociation of oxygen on neutral chemistry was studied for plasma-enhanced chemical vapor deposition (PECVD) of zinc oxide using oxygen and diethyl zinc. Electron conditions in the reactor were estimated based on simulations of well-known Ar-O2 plasmas, while the majority of the thermal chemistry was abstracted from the combustion literature. A rudimentary model of film growth was developed using the rate of oxygen dissociation as the lone adjustable parameter.n Model results were compared directly with experimental measurements of deposition rates and neutral species densities for a wide range of conditions. Good quantitative agreement between experiments and model were observed as a function of composition and rf power. The system is highly sensitive to the electron impact dissociation of oxygen, which creates the radical pool that drives the majority of the chemistry. The approach detailed here provides a framework for the development of models of oxide PECVD derived from other metalorganic precursors. 相似文献
Carbon nanowall (CNW) and carbon nanotube (CNT) were prepared as anode materials of lithium-ion batteries. To fabricate a lithium-ion battery, copper (Cu) foil was cleaned using an ultrasonic cleaner in a solvent such as trichloroethylene (TCE) and used as a substrate. CNW and CNT were synthesized on Cu foil using plasma-enhanced chemical vapor deposition (PECVD) and water dispersion, respectively. CNW and CNT were used as anode materials for the lithium-ion battery, while lithium hexafluorophosphate (LiPF6) was used as an electrolyte to fabricate another lithium-ion battery. For the structural analysis of CNW and CNT, field emission scanning electron microscope (FE-SEM) and Raman spectroscopy analysis were performed. The Raman analysis showed that the carbon nanotube in composite material can compensate for the defects of the carbon nanowall. Cyclic voltammetry (CV) was employed for the electrochemical properties of lithium-ion batteries, fabricated by CNW and CNT, respectively. The specific capacity of CNW and CNT were calculated as 62.4 mAh/g and 49.54 mAh/g. The composite material with CNW and CNT having a specific capacity measured at 64.94 mAh/g, delivered the optimal performance. 相似文献
We present a methodology to fabricate carbon nanotube based electrodes using plasma enhanced chemical vapour deposition. The metal catalyst nanoparticles used to promote nanotube growth are removed using a water plasma treatment in combination with an acid attack. The final integrated microelectrode-based devices present excellent electrocatalytic properties that make them suitable for electrochemical applications. The presented methodology enables the construction of highly regular and dense vertically aligned carbon nanotube (VACNT) forests that can be confined within the patterned bounds of a desired surface. These VACNT electrodes display very low capacitive currents and are amenable to further chemical modifications. 相似文献
Pulsed plasma enhanced chemical vapor deposition (pulsed PECVD) and pyrolytic chemical vapor deposition (pyrolyric CVD) of fluorocarbon films from hexafluoropropylene oxide (HFPO) have demonstrated the ability to molecularly design film architecture. Film structures ranging from highly amorphous crosslinked matrices to linear perfluoroalkyl chain crystallites can be established by reducing the modulation frequency of plasma discharge in plasma activated deposition and by eventually shifting mechanistically from an electrically activated to a thermally activated process. X-ray photoelectron spectroscopy (XPS) showed CF2 content increasing from 39–65 mol%. Fourier transform infrared spectroscopy (FTIR) showed an increasing resolution between the symmetric and asymmetric CF2 stretches, and a reduction in the intensity of the amorphous PTFE and CF3 bands. High-resolution solid-state 19F nuclear magnetic resonance spectroscopy (NMR) revealed an increasing CF2CF2CF2 character, with the pyrolytic CVD film much like bulk poly(tetrafluoroethylene) (PTFE). X-ray diffraction (XRD) patterns evidenced an increase in crystallinity, with the pyrolytic CVD film showing a characteristic peak at 2 = 18° representing the (100) plane of the hexagonal structure of crystalline PTFE above 19°C. 相似文献