首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15443篇
  免费   2318篇
  国内免费   4434篇
化学   16480篇
晶体学   273篇
力学   373篇
综合类   103篇
数学   1744篇
物理学   3222篇
  2024年   41篇
  2023年   251篇
  2022年   447篇
  2021年   584篇
  2020年   841篇
  2019年   659篇
  2018年   582篇
  2017年   657篇
  2016年   813篇
  2015年   769篇
  2014年   927篇
  2013年   1589篇
  2012年   1051篇
  2011年   1105篇
  2010年   910篇
  2009年   972篇
  2008年   1019篇
  2007年   1019篇
  2006年   837篇
  2005年   802篇
  2004年   782篇
  2003年   680篇
  2002年   601篇
  2001年   535篇
  2000年   381篇
  1999年   346篇
  1998年   336篇
  1997年   260篇
  1996年   234篇
  1995年   207篇
  1994年   193篇
  1993年   204篇
  1992年   167篇
  1991年   134篇
  1990年   136篇
  1989年   148篇
  1988年   134篇
  1987年   160篇
  1986年   144篇
  1985年   134篇
  1984年   131篇
  1983年   91篇
  1982年   33篇
  1981年   28篇
  1980年   20篇
  1979年   23篇
  1978年   15篇
  1977年   13篇
  1976年   12篇
  1974年   14篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
This paper reports the study by NMR spectroscopy and ab initio methods of the structure of 3,4-dimethyl-1-cyanophosphole and its dimer. The dimer presents a P···P interaction of the pnictogen type due to the presence of σ-holes. NMR of the monomer was recorded in CDCl3 solution while NMR of the dimer corresponds to the solid state (CPMAS) experiments. The 2pJPP spin–spin coupling constant has not been measured, but calculated at the B3LYP level. AIM, NBO and ELF methodologies have been used to describe the electronic structure of the dimer.  相似文献   
992.
Carbon quantum dots (CQDs) were synthesized by heating various carbon sources in HNO3 solution at reflux, and the effects of HNO3 concentration on the size of the CQDs were investigated. Furthermore, the oxygen‐containing surface groups of as‐prepared CQDs were selectively reduced by NaBH4, leading to new surface states. The experimental results show that the sizes of CQDs can be tuned by HNO3 concentration and then influence their photoluminescent behaviors; the photoluminescent properties are related to both the size and surface state of the CQDs, but the photocatalytic activities are determined by surface states alone. The different oxygen‐containing groups on the surface of the CQDs can induce different degrees of the band bending upward, which determine the separation and combination of the electron–hole pairs. The high upward band bending, which is induced by C?O and COOH groups, facilitates separation of the electron–hole pairs and then enhances high photocatalytic activity. In contrast, the low upward band bending induced by C? OH groups hardly prevents the electron–hole pairs from surface recombination and then exhibits strong photoluminescence. Therefore, both the photocatalytic activities and optical properties of CQDs can be tuned by their surface states.  相似文献   
993.
The selective functionalization of the polyphosphorus moiety Ph2PCH2PPh2PPPP present as a tetrahapto‐ligand in complex [Ir(dppm)(Ph2PCH2PPh2PPPP)]+ ( 1 , dppm=Ph2PCH2PPh2) was obtained by reaction of 1 with water under basic conditions at room temperature. The formation of the new triphosphaallyl moiety η3‐P3{P(O)H} was determined in solution by NMR spectroscopy, and confirmed in the solid state by a single‐crystal X‐ray structure of the stable product [Ir(κ2‐dppm)(κ1‐dppm)(η3‐P3{P(O)H})] ( 2 ). In solution, 2 has a fluxional behavior attributable to the four P atoms belonging to the tetraphosphorus moiety in 1 and exhibits a chemical exchange process involving the two PPh2 moieties of the same bidentate ligand, as determined by 1D and 2D NMR spectroscopy experiments carried out at variable temperature. The mechanism of the reaction was investigated at the DFT level, which suggested a selective attack of an in‐situ generated OH? anion on one of the non‐coordinated phosphorus atoms of the P4 moiety. The reaction then evolves through an acid‐assisted tautomerization, which leads to the final compound 2 . Bonding analysis pointed out that the new unsubstituted P3‐unit in the η3‐P3{P(O)H} moiety behaves as a triphosphallyl ligand.  相似文献   
994.
We report two new 3D structures, [Zn3(bpdc)3(2,2′‐dmbpy)] (DMF)x(H2O)y ( 1 ) and [Zn3(bpdc)3(3,3′‐dmbpy)]?(DMF)4(H2O)0.5 ( 2 ), by methyl functionalization of the pillar ligand in [Zn3(bpdc)3(bpy)] (DMF)4?(H2O) ( 3 ) (bpdc=biphenyl‐4,4′‐dicarboxylic acid; z,z′‐dmbpy=z,z′‐dimethyl‐4,4′‐bipyridine; bpy=4,4′‐bipyridine). Single‐crystal X‐ray diffraction analysis indicates that 2 is isostructural to 3 , and the power X‐ray diffraction (PXRD) study shows a very similar framework of 1 to 2 and 3 . Both 1 and 2 are 3D porous structures made of Zn3(COO)6 secondary building units (SBUs) and 2,2′‐ or 3,3′‐dmbpy as pillar ligand. Thermogravimetric analysis (TGA) and PXRD studies reveal high thermal and water stability for both compounds. Gas‐adsorption studies show that the reduction of surface area and pore volume by introducing a methyl group to the bpy ligand leads to a decrease in H2 uptake for both compounds. However, CO2 adsorption experiments with 1′ (guest‐free 1 ) indicate significant enhancement in CO2 uptake, whereas for 2′ (guest‐free 2 ) the adsorbed amount is decreased. These results suggest that there are two opposing and competitive effects brought on by methyl functionalization: the enhancement due to increased isosteric heats of CO2 adsorption (Qst), and the detraction due to the reduction of surface area and pore volume. For 1′ , the enhancement effect dominates, which leads to a significantly higher uptake of CO2 than its parent compound 3′ (guest‐free 3 ). For 2′ , the detraction effect predominates, thereby resulting in reduced CO2 uptake relative to its parent structure 3′ . IR and Raman spectroscopic studies also present evidence for strong interaction between CO2 and methyl‐functionalized π moieties. Furthermore, all compounds exhibit high separation capability for CO2 over other small gases including CH4, CO, N2, and O2.  相似文献   
995.
Activated carbon (AC) supported silver catalysts were prepared by incipient wetness impregnation method and their catalytic performance for CO preferential oxidation (PROX) in excess H2 was evaluated. Ag/AC catalysts, after reduction in H2 at low temperatures (≤200 °C) following heat treatment in He at 200 °C (He200H200), exhibited the best catalytic properties. Temperature-programmed desorption (TPD), X-ray diffraction (XRD) and temperature-programmed reduction (TPR) results indicated that silver oxides were produced during heat treatment in He at 200 °C which were reduced to metal silver nanoparticles in H2 at low temperatures (≤200 °C), simultaneously generating the adsorbed water/OH. CO conversion was enhanced 40% after water treatment following heat treatment in He at 600 °C. These results imply that the metal silver nanoparticles are the active species and the adsorbed water/OH has noticeable promotion effects on CO oxidation. However, the promotion effect is still limited compared to gold catalysts under the similar conditions, which may be the reason of low selectivity to CO oxidation in PROX over silver catalysts. The reported Ag/AC-S-He catalyst after He200H200 treatment displayed similar PROX of CO reaction properties to Ag/SiO2. This means that Ag/AC catalyst is also an efficient low-temperature CO oxidation catalyst.  相似文献   
996.
For the synthesis of single-walled carbon nanotubes (SWCNTs) from CH4 over a Fe/MgO catalyst, we proposed a coupled Downer-turbulent fluidized-bed (TFB) reactor to enhance the selectivity and yield (or production rate) of SWCNTs. By controlling a very short catalyst residence time (1–3 s) in the Downer, only part of Fe oxides can be reduced to form Fe nano particles (NPs) available for the growth of SWCNTs. The percentage of unreduced Fe oxides increased and the yield of SWCNTs decreased accordingly with the increase of catalyst feeding rate in Downer. SWCNTs were preferentially grown on the catalyst surface and inhibited the sintering of the Fe crystallites which would be formed thereafter in the downstream TFB, evidenced by TEM, Raman and TGA. The coupled Downer-turbulent fluidized-bed reactor technology allowed higher selectivity and higher production rate of SWCNTs as compared to TFB alone.  相似文献   
997.
Sulfonated carbon as a strong and stable solid acid catalyst exhibited excellent catalytic performance in various acid-catalyzed reactions. Here, sulfonated carbon, as catalyst for oxidation reaction, was prepared via the carbonization of starch followed by sulfonation with concentrated sulfuric acid. N2 physisorption, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray fluorescence and acid-base titration were used to characterize the obtained materials. The catalytic activity of sulfonated carbon was studied in the oxidation of aldehydes to carboxylic acids using 30 wt% H2O2 as oxidant. This oxidation protocol works well for various aldehydes including aromatic and aliphatic aldehydes. The sulfonated carbon can be recycled for three times without obvious loss of activity.  相似文献   
998.
Vanadium pentoxide (V2O5) exhibits high theoretical capacities when used as a cathode in lithium ion batteries (LIBs), but its application is limited by its structural instability as well as its low lithium and electronic conductivities. A porous composite of V2O5-SnO2/carbon nanotubes (CNTs) was prepared by a hydrothermal method and followed by thermal treatment. The small particles of V2O5, their porous structure and the coexistence of SnO2 and CNTs can all facilitate the diffusion rates of the electrons and lithium ions. Electrochemical impedance spectra indicated higher ionic and electric conductivities, as compared to commercial V2O5. The V2O5-SnO2/CNTs composite gave a reversible discharge capacity of 198 mAh·g?1 at the voltage range of 2.05–4.0 V, measured at a current rate of 200 mA·g?1, while that of the commercial V2O5 was only 88 mAh·g?1, demonstrating that the porous V2O5-SnO2/CNTs composite is a promising candidate for high-performance lithium secondary batteries.  相似文献   
999.
Oxygen- and nitrogen-functionalized carbon nanotubes (OCNTs and NCNTs) were applied as metal-free catalysts in selective olefin hydrogenation. A series of NCNTs was synthesized by NH3 post-treatment of OCNTs. Temperature-programmed desorption, N2 physisorption, Raman spectroscopy, high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy were employed to characterize the surface properties of OCNTs and NCNTs, aiming at a detailed analysis of the type and amount of oxygen- and nitrogen-containing groups as well as surface defects. The gas-phase treatments applied for oxygen and nitrogen functionalization at elevated temperatures up to 600 °C led to the increase of surface defects, but did not cause structural damages in the bulk. NCNTs showed a clearly higher activity than the pristine CNTs and OCNTs in the hydrogenation of 1,5-cyclooctadiene, and also the selectivity to cyclooctene was higher. The favorable catalytic properties are ascribed to the nitrogen-containing surface functional groups as well as surface defects related to nitrogen species. In contrast, oxygen-containing surface groups and the surface defects caused by oxygen species did not show clear contribution to the hydrogenation catalysis.  相似文献   
1000.
The combination of coumarin derivative (7-(1,3-dithiolan-2-yl)-9,10-dihydroxy-6H-benzofuro[3,2-c]chromen-6-on), (DC)–titanium dioxide nanoparticles (TiO2) and ionic liquid (IL) yields nanostructured electrochemical sensor, formed a novel kind of structurally uniform and electrocatalytic activity material. This new ionic liquid–TiO2 nanoparticles modified carbon paste electrode (IL–CTP) due to its enhanced conductivity presented very large current response from electroactive substrates. The modified electrode was characterized by different methods including a scanning electron microscope (SEM), electrochemical impedance spectroscopy (EIS) and voltammetry. A pair of well-defined quasi reversible redox peaks of coumarin derivative was obtained at the modified carbon paste electrode (DC/IL–CTP) by direct electron transfer between the coumarin derivative and the CP electrode. Dramatically enhanced electrocatalytic activity was exemplified at the DC/IL–CTP electrode, as an electrochemical sensor to study the electro oxidation of levodopa (LD) and carbidopa (CD). Based on differential pulse voltammetry (DPV), the oxidation of LD and CD exhibited the dynamic range between 0.10– 900.0 μM and 20.0–900.0 μM respectively, and the detection limit (3σ) for LD and CD were 41 nM and 0.38 μM, respectively. DPV was used for simultaneous determination of LD and CD at the DC/IL–CTP electrode, and quantitation of LD and CD in some real samples (such as tablets of Parkin-C Fort and Madopar, Sinemet, water, urine, and human blood serum) by the standard addition method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号