首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   207篇
  免费   7篇
  国内免费   67篇
化学   191篇
力学   4篇
物理学   86篇
  2023年   3篇
  2022年   6篇
  2021年   4篇
  2020年   6篇
  2019年   5篇
  2018年   4篇
  2017年   12篇
  2016年   8篇
  2015年   4篇
  2014年   8篇
  2013年   4篇
  2012年   9篇
  2011年   17篇
  2010年   21篇
  2009年   17篇
  2008年   16篇
  2007年   15篇
  2006年   15篇
  2005年   14篇
  2004年   10篇
  2003年   12篇
  2002年   11篇
  2001年   7篇
  2000年   3篇
  1999年   4篇
  1998年   8篇
  1997年   5篇
  1996年   5篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有281条查询结果,搜索用时 15 毫秒
81.
傅平丰  张彭义 《催化学报》2014,35(2):210-218
以Pt-TiO2为光催化剂,研究了气相甲醛分别在35 h连续UV254 nm光催化、O3强化UV254 nm(O3+UV254 nm)光催化和真空紫外(UV254+185 nm)光催化中的降解效率,考察了副产物O3的去除率,采用X射线光电子能谱(XPS)法分析Pt-TiO2在不同光催化前后Pt的电子态和累积有机产物,研究纳米Pt对甲醛降解和O3去除的强化机理. 连续光催化降解实验表明,以纳米Pt改性TiO2可以同时增强甲醛和O3的去除率,特别是O3的去除率可提高3.1-3.4倍. 对催化剂C 1s和O 1s峰分别经分峰拟合处理后,发现Pt-TiO2上累积的含羰基和羟基的有机物含量按以下顺序减少:UV254 nm光催化 > O3强化UV254 nm光催化 > 真空紫外光催化,而在连续35 h光催化降解过程中,催化剂的失活现象却按相反的方向变得越来越不明显. 负载的金属Pt在O3+UV254 nm和UV254+185nm光催化过程中被氧化成PtOads和Pt4+物种,而在UV254 nm光催化过程中金属Pt未被氧化,所以推测是气相中的O3和羟基自由基参与金属Pt的氧化过程. Pt-TiO2表面高价态的Pt氧化物种可作为光生电子捕获中心,强化光生载流子的分离过程,增强Pt-TiO2的光催化活性. Pt氧化物种可作为O3分解的活化中心,使Pt-TiO2对O3的分解效率远高于纯TiO2. 以XPS对比研究在三种不同光催化环境中Pt-TiO2表面性质,可以解释在UV254+185 nm光催化过程中纳米Pt对甲醛和O3同时去除的强化机理,并说明了催化剂不失活的内在原因.  相似文献   
82.
分别用溶胶凝胶法和分步沉淀法制备了MnOx+γ-Al2O3和MnOx/γ-Al2O3,用等体积浸渍法将等量的Pd(NO3)2分别浸渍于其上,再将它们分别涂覆于堇青石上,得到不同物理化学性质的整体式催化剂,并采用X射线衍射、X射线光电子能谱、程序升温还原和低温N2吸附-脱附等技术对催化剂进行表征.结果表明,制备方法和MnOx焙烧温度明显影响催化剂中MnOx的物相、表面Mn物种和表面活性氧物种的分布及织构性质.活性测试结果表明,两种制备方法得到的催化剂于16–90 oC,380000–580000 h–1条件下均可将0.6μL·L–1 O3完全分解;尤其是溶胶凝胶法制备的Pd/γ-Al2O3+MnOx/γ-Al2O3催化剂分解O3活性较好,催化剂表面Mn2+:Mn3+:Mn4+=1.7:1:3(mol).  相似文献   
83.
A theoretical approach is proposed to model line-mixing (LM) effects on absorption coefficients of O3 perturbed by N2 and air. It uses state-to-state rotational cross-sections calculated with a semi-classical approach and two empirical parameters, which enable switching from the state space to the line space. The first, associated with couplings within Q branches is deduced from a room temperature far-infrared spectrum. The second, governing line-couplings between R (or P) lines, is determined from a spectrum measured in the ν1+ν2+ν3 band. The model developed is then successfully compared with measurements performed at room temperature for a relatively large range of pressure (0.7-8 atm) and in four different bands (from 3 to 300 μm). Accurate predictions are, in particular, obtained in the 10 μm (ν1, ν3) region, which is widely used for remote sensing purposes. Consequences of LM effects on retrievals of ozone atmospheric volume mixing ratios are then studied using simulated atmospheric spectra. The results show that LM leads to systematic spectra fit residuals and errors on the retrieved ozone amounts, which are small but might be detectable in measured atmospheric spectra.  相似文献   
84.
Bi2Sr2CaCu2O8+δ (Bi2212) thin film is an important superconducting material ascribed to its high transition temperatures and low toxicity, but the application of Bi2212 thin films is limited due to the appearances of intergrowth and impurity phases. To achieve high-quality Bi2212 thin film by molecular beam epitaxy (MBE), the oxidizing gas pressure and substrate temperature are the key parameters. Here, the phase formation in Bi-based thin films grown by MBE was studied as a function of oxidizing gas pressure and substrate temperature. Furthermore, the thermodynamic parameters have been investigated through enthalpy change. This study indicates that the substrate temperature was increased with the enhancing of ozone partial pressure when the composition ratio is fixed, Bi2212 single phase can be formed. Moreover, the chemical stability decreases in the order of Bi2Sr2CuO6+δ > Bi2212 > Bi2Sr2Ca2Cu3O10+δ.  相似文献   
85.
We use ultraviolet photoemission spectroscopy (UPS) to investigate the effect of oxygen and air exposure on pentacene thin film electronic structure. It is found that O2 and water do not react noticeably with pentacene on the timescale of several hours, whereas a mixture of oxygen atoms, singlet oxygen and ozone readily oxidizes the organic compound. We obtain no evidence for irreversible intercalation of oxygen into pentacene or considerable p-type doping after re-evacuation. Infrared spectroscopy and atomic force microscopy are used to study the oxidation of pentacene thin films. Our data suggest the oxidation of pentacene with reactive oxygen species to yield highly volatile reaction products as evidenced by significant mass-losses of the films.  相似文献   
86.
Jooho Kim  Bruce E. Koel 《Surface science》2006,600(19):4622-4632
Nanosized gold particles supported on reducible metal oxides have been reported to show high catalytic activity toward CO oxidation at low temperature. This has generated great scientific and technological interest, and there have been many proposals to explain this unusual activity. One intriguing explanation that can be tested is that of Nørskov and coworkers [Catal. Lett. 64 (2000) 101] who suggested that the “unusually large catalytic activity of highly-dispersed Au particles may in part be due to high step densities on the small particles and/or strain effects due to the mismatch at the Au-support interface”. In particular, their calculations indicated that the Au(2 1 1) stepped surface would be much more reactive towards O2 dissociative adsorption and CO adsorption than the Au(1 1 1) surface. We have now studied the adsorption of O2 and O3 (ozone) on an Au(2 1 1) stepped surface. We find that molecular oxygen (O2) was not activated to dissociate and produce oxygen adatoms on the stepped Au(2 1 1) surface even under high-pressure (700 Torr) conditions with the sample at 300-450 K. Step sites do bind oxygen adatoms more tightly than do terrace sites, and this was probed by using temperature programmed desorption (TPD) of O2 following ozone (O3) exposures to produce oxygen adatoms up to a saturation coverage of θO = 0.90 ML. In the low-coverage regime (θO ? 0.15 ML), the O2 TPD peak at 540 K, which does not shift with coverage, is attributed to oxygen adatoms that are bound at the steps on the Au(2 1 1) surface. At higher coverages, an additional lower temperature desorption peak that shifts from 515 to 530 K at saturation coverage is attributed to oxygen adsorbed on the (1 1 1) terrace sites of the Au(2 1 1) surface. Although the desorption kinetics are likely to be quite complex, a simple Redhead analysis gives an estimate of the desorption activation energy, Ed, for the step-adsorbed oxygen of 34 kcal/mol and that for oxygen at the terraces near saturation coverage of 33 kcal/mol, values that are similar to others reported on Au surfaces. Low Energy Electron Diffraction (LEED) indicates an oxygen-induced step doubling on the Au(2 1 1) surface at low-coverages (θO = 0.08-0.17 ML) and extensive disruption of the 2D ordering at the surface for saturation coverages of oxygen (θO ? 0.9 ML). Overall, our results indicate that unstrained step sites on Au(2 1 1) surfaces of dispersed Au nanoparticles do not account for the novel reactivity of supported Au catalysts for CO oxidation.  相似文献   
87.
This work researches the possibility of increasing the dye removal efficiency from wastewater using nonthermal plasma. A study for the optimal air gap distance between dual pin and surface of Acid Blue 25 dye solution and thickness of ground plate is carried out using 3D‐EM simulator to find maximum electric field intensity at the tip of both pins. The consequences display that the best gap for corona discharge is approximately 5 mm using 15 kV source. In addition, the optimum plate thickness is 0.1 mm. These distance and thickness were mentioned are constant during the study of other factors. Dual pin‐to‐plate high‐voltage corona discharge plasma system is presented to investigation experimentally the gap distance, thickness of ground plate, initial dye concentration, pH solution and conductivity on the amount of Acid Blue 25 dye color removal efficiency from wastewater. There is a large consensus among the simulation and experimental work in the air gap and thickness of ground plate. Where the decolorization for air gap 5 mm is 95.74 at time 35 min compared with 91% and 17% for 1 mm and 20 mm gap distance respectively. Also, the discharge energy at each air gap are calculated. Measurement results for the impact of thickness of an Aluminum ground plate on color removal competence showed color removal efficiencies of 86.3%, 90.78% and 98.06%, after treatment time 15 min for thicknesses of 2, 0.5 and 0.1 mm respectively. The decolorization behavior utilizing dual pin‐to‐plate corona discharge plasma system display 82% pigment evacuation proficiency inside 11min. The complete decolorization was accomplished within 28min for distinctive examined introductory color focuses 5 ppm up to 100 ppm. Likewise, the impacts of conductivity by utilizing diverse salts as AlCl3, CaCl2, KCl and NaCl and with distinctive focuses have been explored. The rising of the solution conductivity leads to the reduction of decolorization efficiency. The decolorization efficiency and discharge energy are calculated at different concentration molarity for AlCl3, CaCl2, KCl and NaCl. It was observed that the presence of salts at the same concentration level substantially decreased the rate and the extent of decolorization. The results indicate that the optimum pH for the decolorization of Acid Blue 25 dye is in the range between 3 and 6. Furthermore the conductivity and discharge energy were measurement at each value of pH. Energy yield for decolorization and Electrical Energy per Order (EE/O) under different initial pH value were calculated. A kinetic model is used to define the performance of corona discharge system under different value of pH. The model of pseudo ‐zero, pseudo‐first order, and pseudo‐second order reactions kinetic are utilized to investigate the decolorization of Acid Blue 25 dye. The rate of degradation of Acid Blue 25 dye follows the pseudo‐first order kinetics in the dye concentration. Energy consumption requirements for decolorization was considered. The outcomes will be useful for designing the plasma treatment systems suitable for industrial wastewaters. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
88.
This study presents the results of investigations of a hybrid electrostatic filtration system (HEFS), which combines an electrostatic precipitator (ESP) and a fibrous filter installed downstream of the ESP. The particles escaping from the ESP carry large amount of charge and this can increase the filtration efficiency of the fibrous filter. The filtration characteristics, including the efficiency, pressure drop and ozone generation, were investigated experimentally. The influence of system parameters, including the filter type, applied voltage, and distance between the ESP and fibrous filter on the overall efficiency were also studied. The measured results show that utilizing the non-high-efficient fibrous filter to remove the charged particle could provide a much higher efficiency without adding the pressure drop due to the electrostatic force. If the efficiency was similar, the ozone generated by HEFS was much lower than that of the single ESP. The results proved that filter efficiency increased with a higher applied voltage and higher initial mechanical filtration efficiency. The distance between the filter and ESP had no influence on the system filtration efficiency. The efficiency of filter in HEFS supplied with the positive voltage was slightly lower than for the negative voltage. In addition, the mathematical model was utilized to model the air filter efficiency in HEFS. The modeled and measured results agreed reasonably. Overall conclusion is that the HEFS could operate at a high efficiency with the lower applied voltage, ozone generation and pressure drop.  相似文献   
89.
Under conditions of continuous ozone gas application and constant ultrasonic radiation (UR), chitosan was effectively degraded. The existence of a synergetic effect of ozone and ultrasonic radiation on the degradation of chitosan was demonstrated by means of determination of viscosity-average molecular weight. The efficiency of the ozone and ultrasonic radiation treatment compared with acid hydrolysis on degradation of chitosan was investigated. In addition, the structure of the degraded chitosan was characterized by FT-IR and 13C NMR spectral analyses. The whole initial chitosan's monomer structure still existed in the resulting degraded chitosan with different low molecular weight. The pilot study of the chemical stability of the degraded chitosan was carried out. There was no significant change of the total degree of deacetylation (DD) of degraded chitosan compared with the initial chitosan. The combined O3/UR technique is promisingly suitable for scale-up manufacture of low-molecular-weight chitosan.  相似文献   
90.
气相中O3与HSO自由基之间的相互作用及其反应在大气化学中非常重要.在DFT-B3LYP/6-311++G**和MP2/6-311++G**水平上求得O3+HSO复合物势能面上的稳定构型,B3LYP方法得到了三种构型(复合物Ⅰ,Ⅱ和Ⅲ),而MP2方法只能得到一种构犁(复合物Ⅱ).在复合物Ⅰ和Ⅲ中,HSO单元中的1H原子作为质子供体.与O3分子中的端基O原子作为质子受体相互作用,形成红移氢键复合物;而在复合物Ⅱ中,虽与复合物Ⅰ和Ⅲ中具有相间的质子供体和质子受体,却形成了蓝移氢键复合物.B3LYP/6-311++G**水平上计算的单体间相互作用能的计算考虑了基组重甍误差(BSSE)和零点振动能(ZPVE)校正,其值在-3.37到-4.55 kJ·mol-1之间.采用自然键轨道理论(NBO)对单体间相互作用的本质进行了考查,并通过分子中原子理论(AIM)分析了三种复合物中氢键的电子密度拓扑性质.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号