首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   757篇
  免费   10篇
  国内免费   165篇
化学   714篇
晶体学   4篇
力学   13篇
物理学   201篇
  2023年   11篇
  2022年   23篇
  2021年   19篇
  2020年   48篇
  2019年   15篇
  2018年   26篇
  2017年   39篇
  2016年   28篇
  2015年   26篇
  2014年   36篇
  2013年   51篇
  2012年   60篇
  2011年   79篇
  2010年   64篇
  2009年   81篇
  2008年   86篇
  2007年   62篇
  2006年   48篇
  2005年   30篇
  2004年   28篇
  2003年   24篇
  2002年   7篇
  2001年   17篇
  2000年   9篇
  1999年   1篇
  1998年   6篇
  1997年   3篇
  1996年   4篇
  1993年   1篇
排序方式: 共有932条查询结果,搜索用时 33 毫秒
71.
This paper reports on the preparation and characterization of sulfonated poly(ether ether ketone) (sPEEK)-based mixed matrix membranes. The inorganic matrix consisted of silica: Aerosil®380, tetraethoxysilane (TEOS) or a combination of both to obtain an interconnected silica network. The behavior of these membranes in ethanol–water systems was studied for application in a direct ethanol fuel cell (DEFC). Uptake measurements showed that the converted TEOS content had a strong influence on the hydrophilicity of the membranes. Proton conductivity was strongly related to the water content in the membrane, but the proton diffusion coefficients of membranes with various Aerosil®380–TEOS combinations were similar. Dynamic measurements in liquid–liquid (L–L) and liquid–gas (L–G) systems were performed to study the ethanol transport through the membrane. No reduction in ethanol permeability was obtained in the L–L system, but a remarkable reduction was obtained in the L–G system when 2 M ethanol was applied. The reinforcing characteristic of the combined Aerosil®380–TEOS-system were best observed at 40 °C with 4 M ethanol. The fuel cell performance prediction based on the selectivity of proton diffusion coefficient to ethanol permeability coefficient showed for nearly all composite membranes an improvement with respect to the polymeric reference. The presence of an inorganic phase led to relatively constant proton diffusion coefficients and lower ethanol permeability coefficients in comparison with the polymeric reference.  相似文献   
72.
Rubber composites were obtained from natural (MT) or organomodified (O-MT) montmorillonite clay masterbatches and high molar mass poly(dimethylsiloxane)-gum (PDMS). The masterbatches were prepared by compounding MT or O-MT with a siloxane-polyether surfactant. The rubber composites were characterized by X-ray diffraction, small angle/wide angle X-ray scattering, scanning and transmission electron microscopies and tensile tests. The results showed that masterbatch compounding with O-MT improved the dispersion of this clay into the PDMS matrix. The morphology of the resulting composite showed a combination of intercalated and partially exfoliated clay layers with occasional clay aggregates. The addition of only 5 phr of O-MT into the PDMS matrix, via masterbatch compounding, improved the tensile strength as much as that obtained with the composite filled with 30 phr of O-MT clay prepared by the direct addition of the clay to PDMS. Moreover, the elongation at break was improved by at least 126%.  相似文献   
73.
This study focused on the fabrication of calcium phosphate (Ca-P)/poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanocomposite scaffolds loaded with biomolecules using the selective laser sintering (SLS) technique and their evaluation. Ca-P/PHBV nanocomposite microspheres loaded with bovine serum albumin (BSA) as the model protein were fabricated using the double emulsion solvent evaporation method. The encapsulation efficiency of BSA in PHBV polymer microspheres and Ca-P/PHBV nanocomposite microspheres were 18.06 ± 0.86% and 24.51 ± 0.60%, respectively. The BSA loaded Ca-P/PHBV nanocomposite microspheres were successfully produced into three-dimensional porous scaffolds with good dimensional accuracy using the SLS technique. The nanocomposite microspheres served as protective carriers and maintained the bioactivity of BSA during SLS. The effects of SLS parameters such as laser power and scan spacing on the encapsulation efficiency of BSA in the scaffolds and in vitro BSA release were studied. An initial burst release was observed, which was followed by a slow release of BSA. After 28-day release, The PHBV matrix was slightly degraded after 28-day in vitro release study. It was shown that nanocomposite scaffolds with controlled architecture obtained via SLS could be incorporated with biomolecules, enhancing them with more functions for bone tissue engineering application or making them suitable for localized delivery of therapeutics.  相似文献   
74.
The 2-(2-(5,5-dimethyl-1,3,2-dioxaphosphinyl-2-ylamino)ethy-amino)-N,N,N-triethyl-2-oxoethanaminium chloride (compound c) containing phosphorus-nitrogen structure was synthesized and characterized. A novel intumescent flame retardant, namely montmorillonite (MMT) by modified with compound c (c-MMT), was prepared by ion exchanging of the nanometer Na+-montmorillonite (Na-MMT) with compound c. Both FTIR and X-ray diffraction (XRD) indicated that compound c had intercalated with Na-MMT and exfoliated c-MMT/PU nanocomposites have obtained by in-situ polymerization. TEM results further support the formation of the exfoliated nanocomposites. The thermal stability and flammability of c-MMT/PU composites were investigated by thermogravimetric analysis (TGA) and cone calorimeter test respectively. The results showed that the addition of flame retardant c-MMT enhanced the thermal stability and flame retardancy of PU significantly. SEM results indicated that c-MMT can achieve better dispersion in the chars after combustion and the compact and dense intumescent char is formed for c-MMT/PU composites after combustion. It is found that the char structure plays an important role for c-MMT in PU resin. The thermal stability and flame retardancy of PU resin were also significantly improved by an addition of c-MMT in PU resin.  相似文献   
75.
This study explores whether nanoparticles incorporated in polymers always act as synergists of conventional flame-retardant additives. For this purpose, two different filler nanoparticles, namely organically modified layered-silicate clay minerals or nanoclays and multi-walled carbon nanotubes, were incorporated in poly(methyl methacrylate) filled with an organophosphorus flame-retardant that acts through intumescence. Effective dispersion techniques specific to each nanoparticle were utilized and prepared samples were thoroughly characterized for their nanocomposite morphologies. Nanoclays were shown to outperform carbon nanotubes in respect of improving the fire properties of intumescent formulations assessed by cone calorimeter analysis. An intriguing explanation for the observed behaviour was the restriction of intumescence by strong carbon nanotube networks formed on the flaming surfaces during combustion contrary to enhanced intumescent chars by nanoclays. Carbon nanotubes surpassed nanoclays considering the thermal stability of intumescent formulations in thermogravimetry whereas mechanical properties were significantly superior with nanoclays to those with carbon nanotubes.  相似文献   
76.
The impact of small amounts of organomodified clay (OMMT) on the photo-degradation behaviour of two blends obtained by mixing either low-density polyethylene (LDPE) or high density polyethylene (HDPE) with polyamide 6 (PA6) (LDPE/PA6 and HDPE/PA6 75/25 wt-%) was studied. The complex photo-degradation behaviour was followed by monitoring the main physical-mechanical properties of the blends. In particular, mechanical and spectroscopic tests were performed in conditions of accelerated artificial aging. An accurate mechanical and morphological characterization was previously carried out. The presence of the OMMT promotes the unexpected formation of a co-continuous morphology for the HDPE/PA6 blend without significantly improving the interfacial adhesion. Differently, the OMMT-filled LDPE/PA6 blend exhibits a finely distributed morphology, and some apparent improvement of the interfacial adhesion was noticed. Probably due to these differences in microstructure, a different impact of the nanoparticles on the photo-resistance behaviours was observed for the two families of samples. In particular, the HDPE-based nanocomposite blend exhibits an improved photo-resistance, while the opposite occurs for the LDPE-based system.  相似文献   
77.
Novel high-reactive polyhedral oligomeric silsesquioxanes bearing multi-N-methylol groups (R-POSS) is synthesized. The chemical structure of R-POSS is characterized by FT-IR, 1H NMR, 29Si NMR. Nano-structure of R-POSS is observed by field emission scanning electro microscope (FSEM) and AFM. R-POSS monomer imparts a nano-sized inorganic core and organic corner with multi-N-methylol groups. R-POSS can readily crosslink to cellulose polymer and improve elastic recovery of cellulose materials. R-POSS as novel POSS reagent may be utilized for preparation of nanocomposite materials and functional biomaterials.  相似文献   
78.
We investigate the potential of plasmonic resonance in metal nanocomposite materials for the design of photonic crystal all optical switches by numerical methods. We study the absorption effect of the plasmonic resonance on the Fano resonances of one dimensional photonic crystal slabs covered by a metal nanocomposite layer. It is shown that the absorption reduces the contrast of the Fano resonances. However, for adequate metal nanoparticle concentrations it is possible to achieve both sufficiently sharp Fano resonance and strong Kerr nonlinearity, which provides a suitable condition for the design of high contrast and low threshold switches.  相似文献   
79.
Hybrid nanostructures composed of gold nanoparticles (NPs) and carbon nanotubes (CNTs) have been prepared by a microwave-assisted method in the mixed solvents of oleylamine and oleic. The morphology, structure and composition of as-obtained Au/CNT composites are characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD). The composites show characteristic plasmon absorption of Au NPs in the Ultraviolet–visual spectrum. Fourier transform infrared spectrum shows the successful introduction of functional groups on the surface of CNTs, which are crucial factors to assist the nucleation in situ of Au NPs on the surface of CNTs. Electrochemical measurements show the enhancement electrochemical response for the gold electrode modified with Au/CNT composites.  相似文献   
80.
Experimental investigations on a sodium ion conducting gel polymer electrolyte nanocomposite based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP), dispersed with silica nanoparticles are reported. The gel nanocomposites have been obtained in the form of dimensionally stable, transparent and free-standing thick films. Physical characterization by X-ray diffraction (XRD), Fourier transform Infra-red (FTIR) spectroscopy and Scanning electron microscopy (SEM) have been performed to study the structural changes and the ion-filler-polymer interactions due to the dispersion of SiO2 nanoparticles in gel electrolytes. The highest ionic conductivity of the electrolyte has been observed to be 4.1 × 10−3 S cm− 1 at room temperature with ~ 3 wt.% of SiO2 particles. The temperature dependence of the ionic conductivity has been found to be consistent with Vogel-Tammen-Fulcher (VTF) relationship in the temperature range from 40 to 70 °C. The sodium ion conduction in the gel electrolyte film is confirmed from the cyclic voltammetry, impedance analysis and transport number measurements. The value of sodium ion transport number (tNa+) of the gel electrolyte is significantly enhanced to a maximum value of 0.52 on the 15 wt.% SiO2 dispersion. The physical and electrochemical analyses indicate the suitability of the gel electrolyte films in the sodium batteries. A prototype sodium-sulfur battery, fabricated using optimized gel electrolyte, offers the first discharge capacity of ~165 mAh g− 1 of sulfur.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号