首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   935篇
  免费   89篇
  国内免费   169篇
化学   1108篇
晶体学   1篇
力学   19篇
综合类   4篇
数学   1篇
物理学   60篇
  2024年   3篇
  2023年   36篇
  2022年   39篇
  2021年   57篇
  2020年   77篇
  2019年   57篇
  2018年   49篇
  2017年   81篇
  2016年   76篇
  2015年   57篇
  2014年   41篇
  2013年   115篇
  2012年   42篇
  2011年   35篇
  2010年   31篇
  2009年   45篇
  2008年   58篇
  2007年   43篇
  2006年   35篇
  2005年   37篇
  2004年   27篇
  2003年   21篇
  2002年   18篇
  2001年   14篇
  2000年   24篇
  1999年   15篇
  1998年   8篇
  1997年   7篇
  1996年   6篇
  1995年   6篇
  1994年   9篇
  1993年   11篇
  1992年   8篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
排序方式: 共有1193条查询结果,搜索用时 15 毫秒
21.
温度及pH值敏感水凝胶的合成和应用   总被引:2,自引:0,他引:2  
直接将丙烯酸单体与N-异丙基丙烯酸胺共聚交联合成了温度及pH值敏感的水凝胶。包埋于水凝胶中的药物的释放随温度升高和pH值增大而加快,药物的释放兼有温度和pH值敏感性,对pH值的响应更加显著。  相似文献   
22.
聚乙烯醇硫酸钾水凝胶电机械化学行为研究   总被引:1,自引:0,他引:1  
通过将交联聚乙烯醇硫酸酯化的方法制备了一种新型电刺激响应性聚乙烯醇硫酸钾(PVSK)智能水凝胶,并探讨了溶液离子强度和pH对PVSK水凝胶的溶胀吸水率、机械性能以及电机械化学行为的影响.结果表明,制备的PVSK水凝胶的平衡溶胀比随NaCl溶液离子强度的增大而减小,在pH2.39~10.83范围内基本不受溶液pH的影响;经不同离子强度和pH的NaCl溶液充分溶胀的PVSK水凝胶具有良好的机械性能,在非接触的直流电场作用下,该水凝胶向电场负极弯曲,凝胶的弯曲速度和弯曲偏转量随外加电场强度的增加而增大,随NaCl溶液离子强度的增大出现临界最大值,但不随溶液pH(2.08~10.53)的改变而改变;在循环电场作用下,PVSK水凝胶的电机械化学行为具有良好的可逆性.  相似文献   
23.
At four different charge densities, ionic hydrogels based on N,N-dimethylacrylamide (DMAAm), acrylamide (AAm), and itaconic acid (IA) were synthesized by free-radical cross-linking copolymerization in water with N,N-methylenebis(acrylamide) (BAAm) as the cross-linker, ammonium persulfate (APS) as the initiator, and N,N,N′,N′-tetramethylenediamine (TEMED) as the activator. The swelling behaviors of these hydrogels were analyzed in buffer solutions at various pH. It was observed that the swelling behavior of cross-linked ionic poly(N,N-dimethylacrylamide-co-acrylamide) [P(DMAAm-co-AAm)] hydrogels at different pHs agreed with the modified Flory-Rehner equation based both on the phantom network and affine network models and the ideal Donnan theory. In addition, the kinetics of swelling of the hydrogels was studied in pH 2, 5 and 9 buffer solutions. The swelling curves exhibited the characteristic features of transport process, apparently the Fickian diffusion of fast rates.  相似文献   
24.
The purpose of this paper is studying the effect of incorporation of Multiwall Carbon Nanotubes (MWCNT) into two different nanocomposites in poly vinyl alcohol (PVA)/polyvinylpyrrolidone (PVP), and PVA/Polyethylene glycol (PEG). MWCNT were synthesized by chemical vapor deposition (CVD) method using acetylene and Fe/Co/Al2O3 as carbon precursor and catalyst, respectively. Nitric acid and sulfuric acid were used for purification and functionalization of MWCNT. Afterward, highly pure and functionalized MWCNT (0, 0.02, and 0.05% w/w) were incorporated in PVA/PVP and PVA/PEG to synthesize PVA/PVP/MWCNT and PVA/PEG/MWCNT nanocomposites hydrogel membranes that cross-linked by freezing–thawing. PEG and PVP were selected in these nanocomposites as dispersion matrix for MWCNT as well as for increasing the elasticity of the nanocomposites membranes. The morphology of the hydrogels was characterized by SEM, FTIR, XRD, TGA, and the mechanical properties of the hydrogel membranes were investigated. The swelling behavior in different pH-buffer solutions was studied as well as studying weight loss percentage and swelling kinetic. The drug releasing process of the hydrogel membranes was investigated using salicylic acid as a model drug. It was found that MWCNT are dispersed well into the polymers and crystallinity, mechanical properties and thermal stability of the hydrogels contain MWCNT are better than that without MWCNT. Maximum degree of swelling was observed at pH 7 and swelling degree increases with increasing the ratio of MWCNT in the hydrogels from 0.02 to 0.05%. All hydrogel membranes followed non-Fickian mechanism and drug releasing were controlled by varying the pH and amount of MWCNT.  相似文献   
25.
The reaction of copolymer of N,N-dimethylacrylamide (DMAA) and bromoethyl methacrylate with potassium cinnamate produced water-soluble photosensitive polymers. Photosensitive polyDMAA films were irradiated with a 400 W high-pressure mercury lamp (λ > 280 nm) to produce crosslinked polymers, which were swollen in water. The degree of swelling was controlled by the irradiation time and content of cinnamate moieties in copolymers. Higher cinnamoylation and longer irradiation time resulted in higher yield of crosslinked polymers and less swellability. Partial degelation upon irradiation at λ ~ 254 nm was observed. The advantage of gelation via photodimerization over conventional chemical crosslinking methods is discussed in conjunction with biomedical applications. © 1992 John Wiley & Sons, Inc.  相似文献   
26.
Chelating poly(vinylpyrrolidone/acrylic acid) (PVP/AAc) copolymer hydrogels were prepared by radiation-induced copolymerization. The effects of preparation parameters such as PVP content in the hydrogel and irradiation dose on the swelling behavior of the hydrogel were studied. The pH dependent swelling was investigated. The thermal stability of the prepared hydrogel and the metal chelated ones was characterized by TGA. The removal of Fe(III), Cu(II), and Mn(II) from aqueous solution by the prepared PVP/AAc chelating hydrogel was examined by batch equilibration technique. The influence of treatment time, pH, and the initial feed concentration on the amount of the metal ions removed was studied. The results show that the removal of the metal ion followed the following order: Fe(III) > Cu(II) > Mn(II). The amounts of the removed metal ions increased with treatment time and pH of the medium. To re-use the hydrogel, the metal ions were stripped by using 2 N HCl.  相似文献   
27.
The synthesis of nanostructured poly(N-isopropylacrylamide) (polyNIPA) hydrogels by a two-stage polymerization process is reported here. The process involves the synthesis of slightly crosslinked polyNIPA nanoparticles by inverse (w/o) microemulsion polymerization; then, these particles are dried, cleaned and dispersed in an aqueous solution of NIPA and a crosslinking agent (N,N-methylene-bis-acrylamide or NMBA) and polymerized to produce the nanostructured hydrogels. Their swelling and de-swelling kinetics, volume phase transition temperatures (T VPT) and mechanical properties at the equilibrium swollen state are investigated as a function of the weight ratio of polyNIPA particles to monomer (NIPA). The nanostructured gels exhibit larger equilibrium water uptake, faster swelling and de-swelling rates and similar T VPT than those of the conventional ones; moreover, the elastic and Young moduli are larger than those of the conventional hydrogels at similar swelling ratios. The fast swelling and de-swelling kinetics are explained in terms of the controlled inhomogeneities introduced by the method of synthesis.  相似文献   
28.
The composite hydrogel of a nanoscale metal–organic framework (NMOF) and nanoclay has emerged as a new soft-material with advanced properties and applications. Herein, we report a facile synthesis of a hydrogel nanocomposite by charge-assisted self-assembly of Pd@ZIF-8 nanoparticles with Laponite® nanoclay which coat the surface of Pd@ZIF-8 nanoparticles. Such surface coating significantly enhanced the thermal stability of the ZIF-8 compared to the pristine framework. Further, the Pd@ZIF-8+LP hydrogel nanocomposite shows better size-selective catalytic hydrogenation of olefins than Pd@ZIF-8 nanoparticles based on selective diffusion of the substrate.  相似文献   
29.
利用聚乙二醇(PEG,相对分子质量2 000)与对羟基苯丙酸(DAT)的酯化反应得到凝胶因子,在辣根过氧化物酶(HRP)和过氧化氢催化体系的作用下,制备了一种新型的能快速固化的可注射型水凝胶。研究了HRP、凝胶因子和过氧化氢浓度对凝胶时间的影响,结果表明,当凝胶因子浓度高、HRP浓度高、过氧化氢浓度较低时,凝胶时间较短,最短可在3 s内凝胶。采用红外光谱和核磁共振氢谱对凝胶因子的结构进行了表征,并提出了HRP/H2O2酶促催化下凝胶因子的自由基聚合机理。  相似文献   
30.
Deferoxamine grafted alginate (SA‐DFA) was successfully synthesized via amidation of sodium alginate with deferoxamine mesylate as determined by H‐NMR and elemental analysis. SA‐DFA with different graft yield was obtained by adjusting the ratio of sodium alginate and deferoxamine mesylate. It was found that aqueous solution of SA‐DFA could form hydrogel spontaneously due to hydrogen bonding interactions, which also endowed the SA‐DFA hydrogel with self‐healing capability. The healing efficiency of SA‐DFA hydrogels ranged from 53.64 to 90.16%. In addition, surface morphologies of SA‐DFA hydrogels before/after self‐healing process were demonstrated by SEM images. We anticipated that such self‐healable alginate hydrogel would be applied in the field of wound healing. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 856–865  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号