首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1369篇
  免费   184篇
  国内免费   1097篇
化学   2294篇
晶体学   37篇
力学   31篇
综合类   10篇
数学   14篇
物理学   264篇
  2024年   12篇
  2023年   92篇
  2022年   152篇
  2021年   217篇
  2020年   203篇
  2019年   134篇
  2018年   101篇
  2017年   130篇
  2016年   96篇
  2015年   88篇
  2014年   138篇
  2013年   173篇
  2012年   97篇
  2011年   124篇
  2010年   86篇
  2009年   107篇
  2008年   76篇
  2007年   101篇
  2006年   114篇
  2005年   75篇
  2004年   68篇
  2003年   58篇
  2002年   36篇
  2001年   38篇
  2000年   31篇
  1999年   22篇
  1998年   20篇
  1997年   9篇
  1996年   10篇
  1995年   12篇
  1994年   7篇
  1993年   5篇
  1992年   6篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1986年   1篇
  1985年   1篇
  1981年   1篇
排序方式: 共有2650条查询结果,搜索用时 31 毫秒
21.
本非水电池体系由Li负极、多孔石墨电极和电解质溶液组成;电解质溶液由无机溶剂POCl_3(或有机溶剂硝基苯)和溶解在该溶剂中的活性物质(KIBr_2)及支持电解质构成。该电池体系的开路电压为8.50伏左右,放电性能良好,可望在实际中得到应用。此外,对电池体系的反应机理也作了初步的探讨。  相似文献   
22.
应用以氢氧化物共沉淀为前驱体的高温固相烧结法合成LiNi1/3Mn1/3Co1/3O2正极材料,研究了沉淀温度及烧结过程锂盐投入量对该材料的结构和电化学性能的影响.结果表明,以室温(-20℃)下合成的氢氧化物为前驱体制备的LiNi1/3Mn1/3Co1/3O2具有较好的电化学性能.高温固相烧结会导致部分LiOH损失,因而在合成过程中需加入过量的氢氧化锂,实验表明Li1.08Ni1/3Mn1/3Co1/3O2材料的电化学性能最优.  相似文献   
23.
IntroductionLithium ion batteries are key components of mobiletelephones and portable computers.Among the knownLi-intercalation materials for lithium ion battery cath-odes,LiCoO2,LiNiO2,and LiMn2O4have been stud-ied extensively[1—3].LiCoO2is nowused in c…  相似文献   
24.
Molybdenum trioxide (MoO3) xerogel films modified with poly(vinyl alcohol)+poly(vinyl pyrrolidone) (PVP+PVA) polyblends were obtained by ion-exchange method with sol-gel technique. Investigations were conducted using X-ray “diffractometry”, Fourier transform infrared spectroscopy, and cyclic voltammetry. The results show that the H atoms in polyblend are H-bonded with the O atoms in the Mo=O bonds of MoO3 xerogel, which effectively shield the electrostatic interaction between MoO3 interlayer and Li+ ions when MoO3 xerogel is modified by the intercalation of (PVP+PVA). The reversibility of the insertion/extraction of Li+ ions is greatly improved by the modification with polyblend of MoO3 nanocomposite films. MoO3 and (PVP+PVA) x MoO3 (x = 0, 0.5) nanobelts were obtained by a simple hydrothermal process from MoO3 sol. The electrochemical cells with configuration Li/(LiPF6+EC+DMC)/MoO3 modified by (PVP+PVA) were fabricated and their discharge profiles studied.  相似文献   
25.
The development of highly active and stable reversible oxygen electrocatalysts is crucial for improving the efficiency of metal-air battery devices. Herein, an efficient liquid exfoliation strategy was designed for producing silk-like FeS2/NiS2 hybrid nanocrystals with enhanced reversible oxygen catalytic performance that displayed excellent properties for Zn-air batteries. Because of the unique silk-like morphology and interface nanocrystal structure, they can catalyze the oxygen evolution reaction (OER) efficiently with a low overpotential of 233 mV at j = 10 mA cm?2. This is an improvement from the recently reported catalysts in 1.0 M KOH. Meanwhile, the oxygen reduction reaction (ORR) activity of the silk-like FeS2/NiS2 hybrid nanocrystals showed an onset potential of 911 mV and a half-wave potential of 640 mV. In addition, the reversible oxygen electrode activity of the silk-like FeS2/NiS2 hybrid nanocrystals was calculated to be 0.823 V, based on the potential of the OER and ORR. Further, the homemade rechargeable Zn-air batteries using FeS2/NiS2 hybrid nanocrystals as the air-cathode displayed a high open-circuit voltage of 1.25 V for more than 17 h and an excellent rechargeable performance for 25 h. The solid Zn-air batteries exhibited an excellent rechargeable performance for 15 h. This study provided a new method for designing interface nanocrystals with a unique morphology for efficient multifunctional electrocatalysts in electrochemical reactions and renewable energy devices.  相似文献   
26.
Ti4+ ions were introduced to the VO43- substituted Li3Fe2(PO4)3 by sol-gel method. Simultaneous substitution of Ti4+ for Fe3+ and VO43- for PO43- in the Li3Fe2(PO4)3 resulted in a net improvement in the rate capability and cycling performance, as compared with the single Ti4+ or VO43- substituted compound.  相似文献   
27.
低共熔混合锂盐相图的绘制及应用   总被引:3,自引:0,他引:3  
采用热分析法对不同组成的混合锂盐二元体系进行研究, 绘制了混合锂盐体系的步冷曲线和T-x相图, 结果表明体系均为具有最低共熔点的二元体系. LiOH-LiNO3、LiOH-LiCl、LiOH-Li2CO3及LiNO3-LiCl体系的最低共熔点分别为175.7、294.5、418.2及221.6 ℃. 利用低共熔混合物LiNO3-LiOH为锂盐与不同前驱体反应, 制备出了层状结构良好的锂离子电池正极材料LiNiO2、LiNi0.8Co0.2O2及LiNi1/3Co1/3Mn1/3O2. X射线衍射分析表明, 合成的材料具有规整的层状NaFeO2结构, 且XRD衍射峰强度之比I(003)/I(104)>2.0, 电性能测试表明, 在2.7-4.3 V(vs Li/Li+)的电压范围内进行0.1C倍率充放电, LiNiO2、LiNi0.8Co0.2O2、LiNi1/3Co1/3Mn1/3O2首次充电比容量分别达168.0、225.4、194.0 mAh·g-1, 放电比容量分别为138.4、165.8、157.7 mAh·g-1.  相似文献   
28.
A novel process is proposed for synthesis of spinel LiMn2O4 with spherical particles from the inexpensive materials MnSO4, NH4HCO3, and NH3H2O. The successful preparation started with carefully controlled crystallization of MnCO3, leading to particles of spherical shape and high tap density. Thermal decomposition of MnCO3 was investigated by both DTA and TG analysis and XRD analysis of products. A precursor of product, spherical Mn2O3, was then obtained by heating MnCO3. A mixture of Mn2O3 and Li2CO3 was then sintered to produce LiMn2O4 with retention of spherical particle shape. It was found that if lithium was in stoichiometric excess of 5% in the calcination of spinel LiMn2O4, the product had the largest initial specific capacity. In this way spherical particles of spinel LiMn2O4 were of excellent fluidity and dispersivity, and had a tap density as high as 1.9 g cm–3 and an initial discharge capacity reaching 125 mAh g–1. When surface-doped with cobalt in a 0.01 Co/Mn mole ratio, although the initial discharge capacity decreased to 118 mAh g–1, the 100th cycle capacity retention reached 92.4% at 25°C. Even at 55°C the initial discharge capacity reached 113 mAh g–1 and the 50th cycle capacity retention was in excess of 83.8%.  相似文献   
29.
E.E. Ferg  N. Rust 《Polymer Testing》2007,26(8):1001-1014
Polypropylene (PP) is one of the most common plastics used in the manufacturing of lead-acid battery cases, where the recycling of the material has become common practice, being both economically viable and environmentally friendly. During the recycling process, the various components of the spent battery are separated, where the crushed battery case is washed in order to remove any excess acid and lead-containing particles. The plastic components are subsequently melted and extruded into pellets that are then blended with virgin material to injection mold new battery cases and lids. This study showed that a significant amount of lead-containing particles in the form of lead dioxide and lead sulfate remain in the recycled plastic, and are evenly distributed throughout the polymer matrix. TEM studies showed that the particles are less than 1 μm in size and X-ray diffraction analysis of ashed recycled PP samples showed the presence, amongst others, of talc, calcium carbonate, rutile and iron oxide. These compounds come from a range of fillers, flame-retardants, colorants and impurities that originated from the various original battery cases that were recycled. The study showed that modern X-ray fluorescence (XRF) analysis is a quick and reliable method to quantify the amount of the elements found in the plastic and that the concentration of Pb in the plastic can be used as a type of “tracer” to determine the amount of recycled PP used in the manufacturing of a particular battery case. The study also showed that there is possible environmental contamination, in particular with Pb and Br contained in recycled PP during the injection molding process and the burning of the plastic. The Pb- and Br-containing particles are small enough to become air-borne during the burning process of the plastic, resulting in them being part of the soot and other hydrocarbon oils that are emitted. No Pb was observed in the gases emitted during simulated low-temperature injection molding conditions; however, a significant amount of Br was detected in the gases at the lower temperatures. Clear environmental waste classification of the battery case plastic should be done before its final incineration where the amount of trace metals present and its possible contamination to the environment should be considered. Care should also be taken for machine operators who work with the recycled plastic, that no excessive exposure to the halogenated compounds is experienced.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号