全文获取类型
收费全文 | 2273篇 |
免费 | 61篇 |
国内免费 | 195篇 |
专业分类
化学 | 1447篇 |
晶体学 | 19篇 |
力学 | 127篇 |
综合类 | 3篇 |
数学 | 422篇 |
物理学 | 511篇 |
出版年
2024年 | 3篇 |
2023年 | 79篇 |
2022年 | 63篇 |
2021年 | 67篇 |
2020年 | 110篇 |
2019年 | 40篇 |
2018年 | 51篇 |
2017年 | 102篇 |
2016年 | 90篇 |
2015年 | 63篇 |
2014年 | 127篇 |
2013年 | 170篇 |
2012年 | 126篇 |
2011年 | 178篇 |
2010年 | 156篇 |
2009年 | 216篇 |
2008年 | 188篇 |
2007年 | 172篇 |
2006年 | 143篇 |
2005年 | 87篇 |
2004年 | 80篇 |
2003年 | 45篇 |
2002年 | 38篇 |
2001年 | 32篇 |
2000年 | 15篇 |
1999年 | 15篇 |
1998年 | 17篇 |
1997年 | 11篇 |
1996年 | 8篇 |
1995年 | 5篇 |
1994年 | 5篇 |
1993年 | 4篇 |
1992年 | 3篇 |
1991年 | 6篇 |
1990年 | 2篇 |
1989年 | 5篇 |
1987年 | 2篇 |
1985年 | 1篇 |
1981年 | 1篇 |
1980年 | 2篇 |
1977年 | 1篇 |
排序方式: 共有2529条查询结果,搜索用时 15 毫秒
11.
《Journal of Macromolecular Science: Physics》2013,52(2):421-436
Abstract Poly(ethylene glycol‐co‐cyclohexane‐1,4‐dimethanol terephthalate)(PETG)/clay nanocomposites were prepared via melt intercalation technique. The effects of concentration of the organic modifier in the clay on the properties of the nanocomposites were studied. Three clays modified using the same alkyl ammonium modifier, but differing in modifier concentration, are used for this purpose. The nanocomposites are characterized using wide‐angle x‐ray diffraction for their structure. Dynamic mechanical analysis of these nanocomposites is also studied to investigate their viscoelastic behaviors. The x‐ray diffraction study shows an increase in the interlayer spacing of organically modified clays as compared to that of Na+ clay. The extent of increase in the interlayer spacing is dependent on the concentration of organic modifier used to modify the montmorillonite. The presence of well‐defined diffraction peaks and the observed increase in the interlayer spacing in the nanocomposites imply the formation of an intercalated hybrid. Dynamic mechanical properties show an increase in the storage modulus of the nanocomposite over the entire temperature range studied, as compared to the pristine polymer. Investigation of the rubbery plateau modulus confirms the reinforcing effect of organically modified clay. The observed enhancement in the modulus was greater for the clay with the lowest content of the organic modifier. These results indicate that in nanocomposites, apart from the compatibility of the organic modifier with the polymer, its concentration in the interlayer also plays a critical role in the structure development and thus in the enhancement of the properties. The nanocomposites showed reduced damping, which was governed by the modifier concentration in the clay. 相似文献
12.
针对现有成像系统因数据冗余而无法兼顾大视场、高分辨、高效性的问题,结合人眼视网膜变分辨成像和并列式复眼成像原理,设计一种多分辨率成像的复合仿生成像系统.该成像系统按照球面和平面兼顾的曲面布局方式,利用11个相机镜头构建相机阵列,组成了四个等级分辨率的子眼拍摄模块.通过物距100 m的远景实验和物距10 m的近景实验发现,该系统在实现高分辨成像的同时,获得总视场达150.8°×37.8°.多分辨率成像实验结果表明,该系统获取的图像的分辨率从中心视场到边缘视场逐渐降低,并且相较于中心清晰全视场成像,四级分辨率成像的拼接图像数据量减少了17.2倍的数据冗余. 相似文献
13.
In this reports the facile and green synthesis of rutile-type titanium dioxide nanoparticles decorated graphene oxide nanocomposite via the ultrasonication process (frequency: 50 kHz, Power: 100 W/cm2 and Ultrasonic type: Ti-horn). Because, the sonochemical synthesis method is simple, non-explosive and harmless method than other conventional technique. Furthermore, the synthesized material was characterized by various analytical techniques including FESEM, EDX, XRD, EIS and electrochemical methods. Then, the synthesized TiO2 MPs@GOS composite was applied for the electrocatalytic detection of theophylline (TPL) using CV and amperometric (current-time) techniques. Captivatingly, the modified sensor has excellent electrocatalytic performance with the wider linear range from 0.02 to 209.6 µM towards the determination of theophylline and the LOD and sensitivity of the modified sensor was calculated as 13.26 nM and 1.183 μA·µM−1·cm−2, respectively. In addition, a selectivity, reproducibility and stability of the TiO2 MPs@GOS modified GCE were analyzed towards the determination of theophylline molecule. Finally, the real time application of TiO2 MPs@GOS modified theophylline sensor was established in serum and drug samples. 相似文献
14.
Hybrid nanoparticles (HNPs) with zinc oxide and polymethyl metha acrylate (inorganic/ polymer) were synthesized through the exploitation of ultrasound approach. The synthesized HNPs were further characterized employing transmission electron microscopy and x-ray diffraction. ZnO-PMMA based HNPs exhibit excellent protection properties to mild steel from corrosion when gets exposed to acidic condition. Electrochemical impendence spectroscopy (EIS) analysis was accomplished to evaluate the corrosion inhibition performance of MS panel coated with 2 wt% or 4 wt% of HNPs and its comparison with bare panel and that of loaded with only standard epoxy coating., Tafel plot and Nyquist plot analysis depicted that the corrosion current density (Icorr) decreases from 16.7 A/m2 for bare material to 0.103 A/m2 for 4% coating of HNPs. Applied potential (Ecorr) values shifted from negative to positive side. These results were further supported by qualitative analysis. The images taken over a period of time indicated the increase in lifetime of MS panel from 2 to 3 days for bare panel to 10 days for HNPs coated panel, showing that ZnO-PMMA HNPs have potential application in metal protection from corrosion by forming a passive layer. 相似文献
15.
In this study, we proposed ‘switching ultrasonic amplitude’ as a new strategy of applying ultrasonic energy to prepare a hybrid of buckminsterfullerene (C60) and gallium oxide (Ga2O3), C60/Ga2O3. In the proposed method, we switched the ultrasonic amplitude from 25% to 50% (by 5% amplitude per 10 min, within 1 h of ultrasonic irradiation) for the sonochemical treatment of a heterogeneous aqueous mixture of C60 and Ga2O3 by a probe-type ultrasonic horn operating at 20 kHz. We found that compared to the conventional techniques associated with high amplitude oriented ultrasonic preparation of functional materials, switching ultrasonic amplitude can better perform in preparing C60/Ga2O3 with respect to avoiding titanium (Ti) as an impurity generating from the tip erosion of a probe-type ultrasonic horn during high amplitude ultrasonic irradiation in an aqueous medium. Based on SEM/EDX analysis, the quantity of Ti (wt.%) in C60/Ga2O3 prepared by the proposed technique of switching ultrasonic amplitude was found to be 1.7% less than that prepared at 50% amplitude of ultrasonic irradiation. The particles of C60/Ga2O3 prepared by different modes of amplitude formed large (2–12 μm) aggregates in their solid phase.Whereas, in the aqueous medium, they were found to disperse in their nano sizes. The minimum particle size of the as-synthesized C60/Ga2O3 in an aqueous medium prepared by the proposed method of switching ultrasonic amplitude reached to approximately 467 nm. Comparatively, the minimum particle sizes were approximately 658 nm and 144 nm, using 25% and 50% amplitude, respectively. Additionally, Ga2O3 went under hydration during ultrasonic irradiation. Moreover, due to the electron cloud interference from C60 in the hybrid structure of C60/Ga2O3, the vibrational modes of Ga2O3 were Raman inactive in C60/Ga2O3. 相似文献
16.
一维导电材料例如纳米线,大量应用于柔性压力传感器中. 但是一维材料和基底之间接触时相互作用力较弱,使得传感器灵敏度、响应时间、和循环寿命等性能指标有待进一步提高. 针对这些问题,设计了石墨烯/石墨烯卷轴多分子层复合薄膜作为传感器导电层. 石墨烯卷轴具有一维结构,而石墨烯的二维结构可以牢固地固定卷轴,以确保高导电性复合薄膜与基底之间的粘附性,同时整体结构的导电通道得到了增加. 由于一维和二维结构的协同效应,实现了应变灵敏度系数3.5 kPa-1、 响应时间小于50 ms、能够稳定工作1000次以上的压阻传感器. 相似文献
17.
18.
The University of Hong Kong positron beam employs conventional magnetic field transport to the target, but has a special hybrid lens design around the positron moderator that allows the beam to be focused to millimeter spot sizes at the target. The good focusing capabilities of the beam are made possible by extracting work-function positrons from the moderator in a magnetic field free region using a conventional Soa lens thus minimizing beam canonical angular momentum. An Einzel lens is used to focus the positrons into the magnetic funnel at the end of transportation magnetic field while at the same time bringing up the beam energy to the intermediate value of 7.5 keV. The beam is E × B filtered at this intermediate energy. The final beam energy is obtained by floating the Soa-Einzel system, E × B filter and flight tube, and accelerating the positrons just before the target. External beam steering saddle coils fine tune the position, and the magnetic field around the target chamber is adjusted so as to keep one of the beam foci always on the target. The system is fully computer controlled. Variable energy-Doppler broadened annihilation radiation (VEDBAR) data for a GaN sample are shown which demonstrate the performance of the positron beam system. 相似文献
19.
Nuran Dogru 《Optics Communications》2006,260(1):227-231
Mode-locking characteristic of hybrid soliton pulse source (HSPS) utilizing linearly chirped raised-cosine flat top apodized fiber Bragg grating (FBG) is investigated by using coupled-mode equations. It is found that the fundamental repetition frequency range of HSPS is significantly extended by using linearly chirped raised-cosine flat top apodized FBG instead of linearly chirped Gaussian apodized FBG. The range of repetition frequencies over which proper mode-locking is obtained is 2-3.3 GHz with linearly chirped raised-cosine flat top apodized grating whereas this range is 2.1-2.95 GHz with linearly chirped Gaussian apodized grating. 相似文献
20.
Dendritic nanocrystalline CdS film was deposited at liquid-liquid interface of surfactants and an electrolyte containing 4 mmol L−1 cadmium chloride (CdCl2) and 16 mmol L−1 thioacetamide (CH3CSNH2) with an initial pH value of 5 at 15 °C by electrochemical synthesis. The nanofilm was characterized by transmission electron microscopy (TEM), field emission scanning electron microscope (FE-SEM), atomic force microscopy (AFM), ultraviolet visible (UV-vis) absorption spectroscopy and fluorescence spectroscopy. The surface morphology and particle size of the nanofilm were investigated by AFM, SEM and TEM, and the crystalline size was 30-50 nm. The thickness of the nanofilm calculated by optical absorption spectrum was 80 nm. The microstructure and composition of the nanofilm was investigated by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), showing its polycrystalline structure consisting of CdS and Cd. Optical properties of the nanofilm were investigated systematically by UV-vis absorption and fluorescence spectroscopy. A λonset blue shift compared with bulk CdS was observed in the absorption spectra. Fluorescence spectra of the nanofilm indicated that the CdS nanofilm emitted blue and green light. The nanocomposites film electrode will bring about anodic photocurrent during illumination, showing that the transfer of cavities produces photocurrent. 相似文献