首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4959篇
  免费   781篇
  国内免费   428篇
化学   1609篇
晶体学   25篇
力学   151篇
综合类   19篇
数学   382篇
物理学   3982篇
  2024年   13篇
  2023年   49篇
  2022年   65篇
  2021年   108篇
  2020年   158篇
  2019年   132篇
  2018年   131篇
  2017年   119篇
  2016年   191篇
  2015年   152篇
  2014年   182篇
  2013年   313篇
  2012年   220篇
  2011年   304篇
  2010年   237篇
  2009年   323篇
  2008年   364篇
  2007年   407篇
  2006年   332篇
  2005年   249篇
  2004年   230篇
  2003年   279篇
  2002年   243篇
  2001年   189篇
  2000年   206篇
  1999年   141篇
  1998年   142篇
  1997年   86篇
  1996年   50篇
  1995年   63篇
  1994年   48篇
  1993年   47篇
  1992年   45篇
  1991年   28篇
  1990年   34篇
  1989年   29篇
  1988年   24篇
  1987年   23篇
  1986年   29篇
  1985年   23篇
  1984年   24篇
  1983年   7篇
  1982年   10篇
  1981年   24篇
  1980年   18篇
  1979年   12篇
  1978年   13篇
  1977年   14篇
  1976年   12篇
  1974年   8篇
排序方式: 共有6168条查询结果,搜索用时 468 毫秒
941.
The large structural tolerance of I–III–VI group quantum dots (QDs) to off-stoichiometry allows their photoluminescence properties to be adjusted via doping, thereby enabling application in different fields. However, the photophysical processes underlying their photoluminescence mechanism remain significantly unknown. In particular, the transition channels of CuInSe2 QDs, which are altered by intrinsic and extrinsic intragap states, remain poorly reported. Herein, we investigated the photophysical processes associated with intragap states via electrochemical and optical techniques by using copper deficient Cu−In−Se QDs as well as Zn doped Cu−In−Se QDs. When the Cu/In molar ratios of Cu−In−Se QDs increased from 0.3 : 1 to 0.9 : 1, the photoluminescence spectra displayed a red-shift from 700 nm to 1050 nm. Although there was a blue-shift after the introduction of Zn2+ dopants in Cu−In−Se QDs, a significant red-shift occurred (from 660 nm to 760 nm) when the Zn/Cu molar ratios decreased from 0.7 : 0.3 to 0.3 : 0.7. The Gaussian deconvolution results of the photoluminescence spectra and the band gap derived from absorption spectra by fitting supported the fact that the optical transition channels are dependent on the Cu/In and Zn/Cu molar ratios. After the introduction of the Zn2+ ions, the alloyed-resultant blue-shift of the emission spectra was observed, primarily due to the enlarged band gap; however, the radiative recombination of prominent intrinsic intragap states is still observed; and only a small proportion of the band-edge exciton undergoes recombination for the sample with low Zn content. Cyclic voltammetry measurements revealed well-defined extrinsic ZnCu intragap states (Zn substitution on Cu sites) and intrinsic Cux (x= 1+/2+) states in the band gap. The results presented here provide a better understanding of the varying effects of dopant on photoluminescence in terms of I–III–VI group QDs.  相似文献   
942.
Mercury fluoride ions formed during the laser ablation of HgF2( s ) show the formation of six different cluster ion series viz., HgFn±, HgnFn–2±, HgnFn–1±, (HgF)n±, HgnFn+1±, and HgnFn+2±. Among the different ion series, the observation of high valent HgFn±(n±=3,4; n=6–8) indicates the existence of corresponding molecules which signify the remarkable participation of 5d Hg electrons in the chemical bonding with F atoms and thus make Hg a truly transition metal. Further, molecular orbital calculations show a large HOMO-LUMO energy gap (≥3 eV) and high electron affinity (≥5 eV) that indicates highly stable HgFn=3,4,6,8 with super halogen properties.  相似文献   
943.
Colloidal quantum dots display remarkable optical and electrical characteristics with the potential for extensive applications in contemporary nanotechnology. As an ideal instrument for examining surface topography and local density of states (LDOS) at an atomic scale, scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) has become indispensable approaches to gain better understanding of their physical properties. This article presents a comprehensive review of the research advancements in measuring the electronic orbits and corresponding energy levels of colloidal quantum dots in various systems using STM and STS. The first three sections introduce the basic principles of colloidal quantum dots synthesis and the fundamental methodology of STM research on quantum dots. The fourth section explores the latest progress in the application of STM for colloidal quantum dot studies. Finally, a summary and prospective is presented.  相似文献   
944.
Tomograms are obtained as probability distributions and are used to reconstruct a quantum state from experimentally measured values. We study the evolution of tomograms for different quantum systems, both finite and infinite dimensional. In realistic experimental conditions, quantum states are exposed to the ambient environment and hence subject to effects like decoherence and dissipation, which are dealt with here, consistently, using the formalism of open quantum systems. This is extremely relevant from the perspective of experimental implementation and issues related to state reconstruction in quantum computation and communication. These considerations are also expected to affect the quasiprobability distribution obtained from experimentally generated tomograms and nonclassicality observed from them.  相似文献   
945.
We study a relativistic quantum particle in cosmic string spacetime in the presence of a magnetic field and a Coulomb-type scalar potential. It is shown that the radial part of this problem possesses the su(1,1)su(1,1) symmetry. We obtain the energy spectrum and eigenfunctions of this problem by using two algebraic methods: the Schrödinger factorization and the tilting transformation. Finally, we give the explicit form of the relativistic coherent states for this problem.  相似文献   
946.
Based on the Standard Model Extension, we investigate relativistic quantum effects on a scalar particle in backgrounds of the Lorentz symmetry violation defined by a tensor field. We show that harmonic-type and linear-type confining potentials can stem from Lorentz symmetry breaking effects, and thus, relativistic bound state solutions can be achieved. We first analyse a possible scenario of the violation of the Lorentz symmetry that gives rise to a harmonic-type potential. In the following, we analyse another possible scenario of the breaking of the Lorentz symmetry that induces both harmonic-type and linear-type confining potentials. In this second case, we also show that not all values of the parameter associated with the intensity of the electric field are permitted in the search for polynomial solutions to the radial equation, where the possible values of this parameter are determined by the quantum numbers of the system and the parameters associated with the violation of the Lorentz symmetry.  相似文献   
947.
948.
We examine mathematical questions around angle (or phase) operator associated with a number operator through a short list of basic requirements. We implement three methods of construction of quantum angle. The first one is based on operator theory and parallels the definition of angle for the upper half-circle through its cosine and completed by a sign inversion. The two other methods are integral quantization generalizing in a certain sense the Berezin–Klauder approaches. One method pertains to Weyl–Heisenberg integral quantization of the plane viewed as the phase space of the motion on the line. It depends on a family of “weight” functions on the plane. The third method rests upon coherent state quantization of the cylinder viewed as the phase space of the motion on the circle. The construction of these coherent states depends on a family of probability distributions on the line.  相似文献   
949.
ABSTRACT

Directly solving for the 2-electron reduced density matrix (2-RDM) via the anti-Hermitian contracted Schrödinger equation (ACSE) enables computations for excited states energies without the N-electron wave function. Of particular interest are excitations and dissociation curves that exhibit strong multi-reference correlation effects. The ground and excited states of the molecules HF, H2O, and N2 are examined at both equilibrium and non-equilibrium geometries to compare the ability of the ACSE and widely used ab initio techniques to treat strong multi-reference electron correlation. Calculations are performed with double-ζ basis sets for calibration with full configuration interaction (FCI). Multi-reference second-order perturbation theory (MRPT2) and the ACSE both provide qualitative precision with respect to FCI data, although the ACSE's capability to include higher order correlation effects permits near-FCI accuracy for ground and excited states and excitation energies.  相似文献   
950.
In this article, structural and electronic properties of MgH2 have been studied. The aim behind this study was to find out the ground state crystal structure of MgH2. For the purpose, density functional theory (DFT)-based full-potential linearized augmented plane wave (FP-LAPW) calculations have been performed in three different space groups: P42/mnm (α-MgH2), Pa3 (β-MgH2) and Pbcn (γ-MgH2). It has been found that the ground state structure of MgH2 is α-MgH2. The present study shows that α-MgH2 transforms into γ-MgH2 at a pressure of 0.41 GPa. After further increase in pressure, γ-MgH2 transforms into β-MgH2 at a pressure of 3.67 GPa. The obtained results are in good agreement with previously reported experimental data. In all the studied phases, the behavior of MgH2 is insulating and its optical conductivity is around 6.0 eV. The α-MgH2 and γ-MgH2 are anisotropic materials while β-MgH2 is isotropic in nature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号