首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1012篇
  免费   23篇
  国内免费   147篇
化学   435篇
晶体学   6篇
力学   209篇
综合类   1篇
数学   66篇
物理学   465篇
  2024年   4篇
  2023年   57篇
  2022年   22篇
  2021年   23篇
  2020年   32篇
  2019年   15篇
  2018年   17篇
  2017年   26篇
  2016年   35篇
  2015年   47篇
  2014年   44篇
  2013年   52篇
  2012年   41篇
  2011年   66篇
  2010年   53篇
  2009年   66篇
  2008年   63篇
  2007年   70篇
  2006年   77篇
  2005年   39篇
  2004年   37篇
  2003年   47篇
  2002年   40篇
  2001年   33篇
  2000年   26篇
  1999年   25篇
  1998年   31篇
  1997年   9篇
  1996年   13篇
  1995年   9篇
  1994年   15篇
  1993年   9篇
  1992年   6篇
  1991年   6篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有1182条查询结果,搜索用时 187 毫秒
991.
The great success of controlled radical polymerizations has encouraged researchers to develop more facile and robust approaches for surface-initiated polymerizations (SIPs) to fabricate polymer brushes, even for non-experts. In recent years, external-stimuli-mediated radical polymerization methods have come to the fore as SIPs because of their less rigorous synthetic procedures and high controllability, which expand the opportunities for synthesizing macromolecules with desired chemical compositions and structures, as well as tailor-made polymers and bioconjugates that show broad applicability and physiological compatibility. This review discusses the latest developments in surface-initiated polymerization methods, in particular, external-stimuli mediated atom transfer radical polymerization (ATRP), photo-induced polymerizations, and reversible addition-fragmentation chain transfer (RAFT) polymerization, as well as other methods and their combination for the application in surface grafting. The implementation of these methods is of great interest due to their unique possibilities to temporally control a polymerization process, fast and straightforward polymerization, and environmentally benign features, which lead to established and emerging applications in biolubrication, antifouling, and biosensing.  相似文献   
992.
A comprehensive understanding of surface reconstruction was critical to developing high performance lattice oxygen oxidation mechanism (LOM) based perovskite electrocatalysts. Traditionally, the primary determining factor of the surface reconstruction process was believed to be the oxygen vacancy formation energy. Hence, most previous studies focused on optimizing composition to reduce the oxygen vacancy formation energy, which in turn facilitated the surface reconstruction process. Here, for the first time, we found that adding oxyanions (SO42−, CO32−, NO3) into the electrolyte could effectively regulate the solid–liquid interface, significantly accelerating the surface reconstruction process and enhancing oxygen evolution reaction (OER) activities. Further studies indicated that the added oxyanions would adsorb onto the solid–liquid interface layer, disrupting the dynamic equilibrium between the adsorbed OH ions and the OH ions generated during surface reconstruction process. As such, the OH ions generated during surface reconstruction process could be more readily released into the electrolyte, thereby leading to an acceleration of the surface reconstruction. Thus, it was expected that our finding would provide a new layer of understanding to the surface reconstruction process in LOM-based perovskite electrocatalysts.  相似文献   
993.
Herein, a chemical pre-potassiation strategy via simultaneously treating both glucose derived carbon (GDC) anode and commercial activated carbon (CAC) cathode in potassium-naphthalene-tetrahydrofuran solution is developed for potassium ion hybrid capacitor (PIHC). Combined with in situ and ex situ characterizations, a radical reaction between pre-potassiation reagent and carbon electrodes is confirmed, which not only deactivates electrochemical irreversible sites, but also promotes to pre-form a uniform and dense KF-rich electrolyte film on the electrodes. As a result, the pre-potassiation treatment presents multiple advantages: (I) the initial Coulombic efficiency (CE) of the GDC anode increases from 45.4 % to 84.0 % with higher rate capability; (II) the CAC cathode exhibits the improved cycling CEs and stability due to the enhanced resistance to electrolyte oxidation at 4.2 V; (III) the assembled PIHC achieves a high energy density of 172.5 Wh kg−1 with cycling life over 10000 cycles.  相似文献   
994.
Electrocatalytic CO2 reduction via renewable electricity provides a sustainable way to produce valued chemicals, while it suffers from low activity and selectivity. Herein, we constructed a novel catalyst with unique Ti3C2Tx MXene-regulated Ag−ZnO interfaces, undercoordinated surface sites, as well as mesoporous nanostructures. The designed Ag−ZnO/Ti3C2Tx catalyst achieves an outstanding CO2 conversion performance of a nearly 100% CO Faraday efficiency with high partial current density of 22.59 mA cm−2 at −0.87 V versus reversible hydrogen electrode. The electronic donation of Ag and up-shifted d-band center relative to Fermi level within MXene-regulated Ag−ZnO interfaces contributes the high selectivity of CO. The CO2 conversion is highly correlated with the dominated linear-bonded CO intermediate confirmed by in situ infrared spectroscopy. This work enlightens the rational design of unique metal-oxide interfaces with the regulation of MXene for high-performance electrocatalysis beyond CO2 reduction.  相似文献   
995.
半胱氨酸在碳钢与硫酸界面的缓蚀行为   总被引:2,自引:1,他引:1  
Interfacial behavior of cysteine (Cys) between mild steel and sulfuric acid solution as a corrosion inhibitor has been studied with electrochemical AC (alternating current) and DC (direct current) techniques at (25.0±0.1) ℃. The AC impedance results were evaluated using equivalent circuits in which a constant phase element (CPE) has been replaced with double layer capacitance (Cdl) to represent the frequency distribution of experimental data. Changes in impedance parameters (charge transfer resistance and double layer capacitance) indicated that cysteine molecules acted by accumulating at the metal/solution interface. The fractional coverage of the metal surface (θ) was determined using AC impedance results and it was found that the adsorption of cysteine on the mild steel surface followed a Langmuir isothermmodel with a standard free energy of adsorption (⊿G0ads) of -35.1 kJ·mol-1.  To clarify the type of interaction between mild steel surface and cysteine molecules with a molecular orbital approach, electronic properties, such as, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy, and the frontier molecular orbital coefficients have been calculated. Energy gaps for the interaction of mild steel surface and cysteine molecules (ELUMOFe-EHOMOCys and ELUMOCys-EHOMOFe) were used to determine whether cysteine molecules acted as electron donors or electron acceptors when they interacted with the mild steel surface. The local reactivity was evaluated through the condensed Fukui indices. Theoretical calculations were carried out using the density functional theory (DFT) at B3LYP level with the 6-311++G(d,p) basis set for all atoms by Gaussian 03W program.  相似文献   
996.
For one-component volatile fluids governed by dispersion forces an effective interface Hamiltonian, derived from a microscopic density functional theory, is used to study complete wetting of geometrically structured substrates. Also the long range of substrate potentials is explicitly taken into account. Four types of geometrical patterns are considered: i) one-dimensional periodic arrays of rectangular or parabolic grooves and ii) two-dimensional lattices of cylindrical or parabolic pits. We present numerical evidence that at the centers of the cavity regions the thicknesses of the adsorbed films obey precisely the same geometrical covariance relation, which has been recently reported for complete cone and wedge filling. However, this covariance does not hold for the laterally averaged wetting film thicknesses. For sufficiently deep cavities with vertical walls and close to liquid-gas phase coexistence in the bulk, the film thicknesses exhibit an effective planar scaling regime, which as a function of undersaturation is characterized by a power law with the common critical exponent -1/3 as for a flat substrate, but with the amplitude depending on the geometrical features.  相似文献   
997.
We study the effect of step permeability on step instabilities on a growing vicinal face. When alternation of kinetic coefficients is taken into account, pairing of steps occurs on the vicinal face. Irrespective of the step permeability, the step pairs are stable for a wandering instability. The bunching of step pairs occurs if the steps are impermeable. The bunch size increases with time as tβ with β=1/2, which does not depend on the form of the repulsive interaction potential between steps. The repulsion influences the relation between the step distance in a bunch and the bunch size. When the repulsive potential ζ with the step distance l is given by ζ∼l, the average step distance in a bunch decreases as with α=1/(ν+1). The exponents, β and α are the same as those in the bunching induced by the Ehrlich-Schowebel effect in growth.  相似文献   
998.
A new modified version of a Perturbation Density Functional Theory (PT-DFT) based on the Statistical Association Fluid Theory (SAFT) with a Lennard–Jones interaction potential is proposed to model the vapor–liquid phase equilibrium and to predict the interfacial behavior of non-associating hydrocarbon fluids. In the interaction model for the Helmholtz free energy functional the molecules are separated into m spherical segments interacting via a Lennard–Jones potential. The segments form chains of tangent spheres. In the perturbation approximation to Density Functional Theory the interaction potential is split according to WCA and the attractive term to the free energy functional consists of a suitable modification of the perturbation expression. This modification to PT-DFT yields surface tensions for the Lennard–Jones sphere fluid (m = 1.0) which are in perfect agreement with simulation data.The new PT-DFT model combines the high flexibility of the SAFT free energy functional with a modified density functional approach that enables to perform accurate calculations of interfacial properties. To take into account the contributions to surface tension resulting from mesoscale thermal fluctuations a semiempirical model is proposed that allows to correct the microscopic intrinsic surface tension.The model is used to describe the phase equilibrium of lower alkanes and aromatics. The results demonstrate the capability to fit vapor–liquid equilibrium data and to predict very accurately the surface properties of these fluids within the uncertainties of the experimental data.  相似文献   
999.
1000.
血红蛋白为人体红细胞中的一种主要蛋白质,是血液中运输氧气的主要物质。由于其类酶的性质、确定的结构以及分布的广泛性,长期以来一直是氧化还原蛋白质直接电化学以及生物传感研究的理想模型。近年来,受益于材料科学与信息技术的快速发展,血红蛋白直接电化学的界面设计以及生物传感已成为当前的研究热点。为此,本文对近年来这方面的研究进展进行综述。通过介绍血红蛋白直接电化学界面设计的基本方法以及生物传感的原理和研究现状,以探索今后的发展趋势。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号