首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1163篇
  免费   809篇
  国内免费   133篇
化学   524篇
晶体学   112篇
力学   7篇
综合类   7篇
数学   7篇
物理学   1448篇
  2024年   4篇
  2023年   17篇
  2022年   38篇
  2021年   40篇
  2020年   65篇
  2019年   46篇
  2018年   67篇
  2017年   83篇
  2016年   124篇
  2015年   82篇
  2014年   152篇
  2013年   167篇
  2012年   172篇
  2011年   204篇
  2010年   135篇
  2009年   120篇
  2008年   94篇
  2007年   107篇
  2006年   116篇
  2005年   70篇
  2004年   55篇
  2003年   41篇
  2002年   40篇
  2001年   27篇
  2000年   17篇
  1999年   14篇
  1998年   2篇
  1997年   4篇
  1995年   2篇
排序方式: 共有2105条查询结果,搜索用时 250 毫秒
51.
In this work, we highlight our recent progress in the synthesis and characterization of functional nanomaterials based on Fe–Pd ferromagnetic alloys by means of template-assisted deposition techniques employing highly ordered nanoporous alumina membranes, such as ordered arrays of nanowires and antidots thin films. Special attention is paid on their basic magnetic properties, such as coercivity, remanence and magnetic anisotropy, and their dependence on the microstructure and morphological parameters of the ordered arrays.  相似文献   
52.
Fluorescence-based white-light-emitting diodes (WLEDs) were fabricated using blue GaN chips and green- and red-emitting CdSe/CdS/ZnS quantum dots (QDs). The coordinate and color temperature of the WLEDs could be varied because of the size-tunable emission of CdSe QDs from 510 to 620 nm. Warm and cold white emissions were confirmed with the color temperature ranging from 4000 to 9000 K. Color coordinates were analyzed at different bias. The fast enhancement of blue emission resulted in the shift of color coordinates to the cold side. The stability of white emission during operation was analyzed; stable spectra were achieved within 90 min.  相似文献   
53.
This study describes the fabrication of ZnO-nanowire films by electro-chemical anodization of Zn foil.The ZnO films are characterized by field emission scanning electron microscopy,X-ray diffraction patterns,and transmission electron microscopy,respectively.The ultraviolet(UV) photo-response properties of the surface-contacted ZnO film are studied through the current evolution processes under different relative humidities.Unlike the usually observed current spectra of the ZnO films,the drop time is shorter than the rise time.The photo-conductivity gain G and the response time τ are both increased with the increase of the applied bias.The photo-conductivity gain G is lowered with the increase of the environmental humidity,while the response time τ is increased.These results can be explained by considering three different surface processes:1) the electron-hole(e-p) pair generation by the UV light illumination,2) the following surface O2-species desorption,and 3) the photo-catalytic hydrolysis of water molecules adsorbed on the ZnO surface.The slow-rise and fast-drop current feature is suggested to originate from the sponge-like structure of the ZnO nanowires.  相似文献   
54.
55.

One‐dimensional fullerene nanostructures with well‐defined morphology have been prepared by a controllable method. Fullerene molecules, such as C60 derivatives and endohedral metallofullerenes, are introduced into the pores of anodic aluminum oxide (AAO) templates under a direct current (DC) electric field. Then several nanostructures such as porous‐wall and solid‐wall fullerene nanowires and nanotubes were fabricated in the pores. The morphology of the fullerene nanostructures is well controllable, and the fullerene nanotubes can be further fabricated through filling nickel atoms inside to form fullerene‐metal composite structures. The results provide, in principle, a step toward broader applications of fullerene‐related materials in nanoscience and nanotechnology.  相似文献   
56.
This paper is an up-to-date mini-review based on literature data and own results regarding synthesis and properties of conducting (pseudo)rotaxane supramolecular structures. Conjugated polymers, such as polyarylene, polyheteroarylene, polyaniline, polyarylenevinylene or polyaryleneimine, were used as axle, while the macrocyclic components were cyclodextrins, cucurbiturils, cyclophanes or crown ethers. Properties of the supramolecular structure such as solubility, thermal or chemical stability, conductivity, etc. can be drastically modified by the inclusion of hydrophobic conjugated polymers inside the macrocycle, without any chemical modification. For instance, the photophysical properties (i.e. quantum yield of fluorescence and electroluminescence) of the supramolecular structures were enhanced when compared with uninsulated conjugated polymers. The doping process is also affected, because the access of a dopant to the conjugated chain is limited only to the uncovered domains of the conjugated chain.  相似文献   
57.
In this work, we develop a low‐temperature, facile solution reaction route for the fabrication of quantum‐dot‐sensitized solar cells (QDSSCs) containing Ag2S‐ZnO nanowires (NWs), simultaneously ensuring low manufacturing costs and environmental safety. For comparison, a CdS‐ZnO NW photoanode was also prepared using the layer‐by‐layer growth method. Ultraviolet photoelectron spectroscopy analysis revealed type‐II band alignments for the band structures of both photoanodes which facilitate electron transfer/collection. Compared to CdS‐ZnO QDSSCs, Ag2S‐ZnO QDSSCs exhibit a considerably higher short‐circuit current density (Jsc) and a strongly enhanced light‐harvesting efficiency, but lower open‐circuit voltages (Voc), resulting in almost the same power‐conversion efficiency of 1.2 %. Through this work, we demonstrate Ag2S as an efficient quantum‐dot‐sensitizing material that has the potential to replace Cd‐based sensitizers for eco‐friendly applications.  相似文献   
58.
采用纳米SiO2和酚醛树脂为原料制备酚醛树脂裂解碳纳米SiO2复合阴极(硅碳物质的量的比为1:1),直接电解PFC/SiO2复合阴极,在900℃熔融盐CaCl2中,恒槽压2.0V下电解,制备出碳化硅纳米线。采用场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)及其附带的能谱仪、X射线分析衍射仪(XRD)和拉曼光谱(Raman)对产物的组成、形貌、微观结构等进行了表征。结果表明:碳化硅纳米线呈立方晶体结构,其直径为4~13nm,长可达数微米;室温下该纳米线在415nm和534nm附近有宽的发光峰。最后,讨论了碳化硅纳米线的生成机制。  相似文献   
59.
The direct transfer of single‐crystalline Au nanowires (NWs) onto Au substrates was achieved by a simple attachment and detachment process. In the presence of a lubricant, Au NWs grown vertically on a sapphire substrate were efficiently moved to an Au substrate through van der Waals interactions. We demonstrate that the transferred Au NWs on the Au substrate can act as sensitive, reproducible, and long‐term‐stable surface‐enhanced Raman scattering (SERS) sensors by detecting human α‐thrombin as well as Pb2+ and Hg2+ ions. These three biochemically and/or environmentally important analytes were successfully detected with high sensitivity and selectivity by Au NW‐SERS sensors bound by a thrombin‐binding aptamer. Furthermore, the as‐prepared sensors remained in working order after being stored under ambient conditions at room temperature for 80 days. Because Au NWs can be routinely transferred onto Au substrates and because the resultant Au NW‐SERS sensors are highly stable and provide with high sensitivity and reproducibility of detection, these sensors hold potential for practical use in biochemical sensing.  相似文献   
60.
The iron nanowires can be fabricated via the process in which sodium borohydride reduces iron salts in external magnetic field. The iron nanowires are found to be covered by passivated layers of iron oxide which prevent the oxidation of iron nanowires. In this process, the boron will include in iron nanowires. The average length and diameter of iron nanowires is around 1.2 micrometers and 60 nanometers, respectively. According to ICP results, the contents of B and Fe are about 1.98 wt% and 87.04 wt%, respectively, in iron nanowires. A wide variety of equipment is used to investigate the morphological, microchemical, and structural characteristics of the newly synthesized iron nanowires ––– e.g., XRD, FE‐SEM, HR‐TEM, VSM and XANES. XANES analysis indicates the boron in iron nanowires exists in the form of B2O3. The saturation magnetization and the coercive force of iron nanowires are 157.93 emu/g and 9.74 Oe, respectively. In‐situ images of synthesized iron nanowires during reduction process in magnetic field are observed by NSRRC transmission X‐ray microscope. Thus, this study develop a novel process to produce iron nanowires with large quantitates and can control its length and diameter by various the concentration of precursors for various applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号