首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23088篇
  免费   2286篇
  国内免费   5035篇
化学   26759篇
晶体学   138篇
力学   270篇
综合类   115篇
数学   434篇
物理学   2693篇
  2024年   49篇
  2023年   382篇
  2022年   544篇
  2021年   824篇
  2020年   1218篇
  2019年   1003篇
  2018年   1032篇
  2017年   969篇
  2016年   1049篇
  2015年   978篇
  2014年   1459篇
  2013年   2294篇
  2012年   1291篇
  2011年   1622篇
  2010年   1231篇
  2009年   1346篇
  2008年   1453篇
  2007年   1592篇
  2006年   1459篇
  2005年   1329篇
  2004年   1309篇
  2003年   1000篇
  2002年   602篇
  2001年   488篇
  2000年   502篇
  1999年   426篇
  1998年   383篇
  1997年   336篇
  1996年   305篇
  1995年   300篇
  1994年   252篇
  1993年   197篇
  1992年   191篇
  1991年   144篇
  1990年   113篇
  1989年   103篇
  1988年   82篇
  1987年   55篇
  1986年   49篇
  1985年   53篇
  1984年   49篇
  1983年   27篇
  1982年   37篇
  1981年   36篇
  1980年   27篇
  1979年   24篇
  1978年   27篇
  1977年   29篇
  1976年   36篇
  1974年   38篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
We explore the influence of two solvents, namely water and the ionic liquid 1‐ethyl‐3‐methylimidazolium acetate (EmimAc), on the conformations of two cellulose models (cellobiose and a chain of 40 glucose units) and the solvent impact on glycosidic bond cleavage by acid hydrolysis by using molecular dynamics and metadynamics simulations. We investigate the rotation around the glycosidic bond and ring puckering, as well as the anomeric effect and hydrogen bonds, in order to gauge the effect on the hydrolysis mechanism. We find that EmimAc eases hydrolysis through stronger solvent–cellulose interactions, which break structural and electronic barriers to hydrolysis. Our results indicate that hydrolysis in cellulose chains should start from the ends and not in the centre of the chain, which is less accessible to solvent.  相似文献   
12.
Incorporation of a non-hexagonal ring into a nanographene framework can lead to new electronic properties. During the attempted synthesis of naphthalene-bridged double [6]helicene and heptagon-containing nanographene by the Scholl reaction, an unexpected azulene-embedded nanographene and its triflyloxylated product were obtained, as confirmed by X-ray crystallographic analysis and 2D NMR spectroscopy. A 5/7/7/5 ring-fused substructure containing two formal azulene units is formed, but only one of them shows an azulene-like electronic structure. The formation of this unique structure is explained by arenium ion mediated 1,2-phenyl migration and a naphthalene to azulene rearrangement reaction according to an in-silico study. This report represents the first experimental example of the thermodynamically unfavorable naphthalene to azulene rearrangement and may lead to new azulene-based molecular materials.  相似文献   
13.
14.
Hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) have been deemed as clean and sustainable strategies to solve the energy crisis and environmental problems. Various catalysts have been developed to promote the process of HER and OER. Among them, two-dimensional covalent organic frameworks (2D COFs) have received great attention due to their diverse and designable structure. In this minireview, we mainly summarize the diverse linkages of 2D COFs and strategies for enhancing the catalytic performance of 2D COFs for HER and OER, such as introducing active building blocks, metal ions and tailored linkages. Furthermore, a brief outlook for the development directions of COFs in the field of HER and OER is provided, expecting to stimulate new opportunities in future research.  相似文献   
15.
16.
17.
miRNA (miR)-155 is a potential biomarker for breast cancers. We aimed at developing a nanosensor for miR-155 detection by integrating hybridization chain reaction (HCR) and silver nanoclusters (AgNCs). HCR serves as an enzyme-free and isothermal amplification method, whereas AgNCs provide a built-in fluorogenic detection probe that could simplify the downstream analysis. The two components were integrated by adding a nucleation sequence of AgNCs to the hairpin of HCR. The working principle was based on the influence of microenvironment towards the hosted AgNCs, whereby unfolding of hairpin upon HCR has manipulated the distance between the hosted AgNCs and cytosine-rich toehold region of hairpin. As such, the dominant emission of AgNCs changed from red to yellow in the absence and presence of miR-155, enabling a ratiometric measurement of miR with high sensitivity. The limit of detection (LOD) of our HCR-AgNCs nanosensor is 1.13 fM in buffered solution. We have also tested the assay in diluted serum samples, with comparable LOD of 1.58 fM obtained. This shows the great promise of our HCR-AgNCs nanosensor for clinical application.  相似文献   
18.
A self-propelled object coupled with an enzyme reaction between urease and urea was investigated at the air/aqueous interface. A plastic object that was fixed to a urease-immobilized filter paper was used as a self-propelled object, termed a urease motor, placed on an aqueous urea solution. The driving force of the urease motor is the difference in the surface tension around the object. Oscillatory motion or no motion was triggered depending on the initial pH of the urea solution. Both the frequency and maximum speed of the oscillatory motion varied depending on the initial pH of the water phase. The mechanisms underlying the oscillatory motion and no motion were discussed in relation to the bell-shaped enzyme activity of urease in the enzyme reaction and the surface tension around the urease motor.  相似文献   
19.
Over the past two decades, advanced materials with hollow interiors have received significant attention in materials research owing to their great application potential across a vast number of technological fields. Though with great difficulty, multi-shelled hollow metal–organic frameworks (MSHMs) have also been successfully synthesized in recent years. Herein, a rational shell-by-shell soft-templating protocol has been devised to fabricate highly uniform multi-shelled hollow cobalt-imidazole-based MOF (ZIF-67). For the first time, it has become possible to endow mesoporosity to this new type of functional material (i.e., mesoporous MOFs). When used as carrier materials in catalytic reactions, in principle, these mesoporous MSHMs with high surface area not only improve the dispersity of metal nanoparticles (NPs), but also efficiently facilitate the mass diffusion of the reactions, resulting in enhanced catalyst activity. Moreover, the obtained MSHMs/M nanocomposites serve as base-metal bifunctional catalysts for one-pot oxidation-Knoevenagel condensation cascade reaction, in which the MSHMs itself serves as a pristine active catalyst in addition to its role of catalyst support. The results demonstrate that excellent multifunctional catalysts can be achieved via preparing intrinsically microporous bulk MOFs into extrinsically mesoporous MSHMs which possess many structural merits that conventional bulk MOFs do not have.  相似文献   
20.
The complex interplay of restricted mass transport leading to local accumulation or depletion of educts, intermediates, products, counterions and co-ions influences the reactions at the active sites of electrocatalysts when electrodes are rough, three-dimensionally mesoporous or nanoporous. This influence is important with regard to activity, and even more to selectivity, of electrocatalytic reactions. The underlying principles are discussed based on the growing awareness of these considerations over recent years.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号