首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2303篇
  免费   376篇
  国内免费   173篇
化学   1800篇
晶体学   34篇
力学   108篇
综合类   5篇
数学   91篇
物理学   814篇
  2024年   3篇
  2023年   84篇
  2022年   84篇
  2021年   113篇
  2020年   118篇
  2019年   97篇
  2018年   66篇
  2017年   105篇
  2016年   121篇
  2015年   131篇
  2014年   134篇
  2013年   194篇
  2012年   129篇
  2011年   152篇
  2010年   113篇
  2009年   180篇
  2008年   145篇
  2007年   132篇
  2006年   108篇
  2005年   100篇
  2004年   86篇
  2003年   54篇
  2002年   70篇
  2001年   48篇
  2000年   36篇
  1999年   36篇
  1998年   27篇
  1997年   29篇
  1996年   16篇
  1995年   25篇
  1994年   20篇
  1993年   18篇
  1992年   12篇
  1991年   11篇
  1990年   7篇
  1989年   7篇
  1988年   6篇
  1987年   2篇
  1986年   6篇
  1985年   7篇
  1984年   4篇
  1983年   6篇
  1982年   2篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1974年   1篇
  1973年   2篇
  1966年   1篇
排序方式: 共有2852条查询结果,搜索用时 15 毫秒
71.
Hybrid gel beads based on combining a low-molecular-weight gelator (LMWG) with a polymer gelator (PG) demonstrate an enhanced ability to self-propel in water, with the LMWG playing an active role. Hybrid gel beads were loaded with ethanol and shown to move in water owing to the Marangoni effect changes in surface tension caused by the expulsion of ethanol – smaller beads move farther and faster than larger beads. Flat shapes of the hybrid gel were cut using a “stamp” – circles moved the furthest, whereas stars showed more rotation on their own axes. Comparing hybrid LMWG/PG gel beads with PG-only beads demonstrated that the LMWG speeds up the beads, enhancing the rate of self-propulsion. Self-assembly of the LMWG into a “solid-like” network prevents its leaching from the gel. The LMWG also retains its own unique function – specifically, remediating methylene blue pollutant dye from basic water as a result of noncovalent interactions. The mobile hybrid beads accumulate this dye more effectively than PG-only beads. Self-propelling gel beads have potential applications in removal/delivery of active agents in environmental or biological settings. The ability of self-assembling LMWGs to enhance mobility and control removal/delivery suggests that adding them to self-propelling systems can add significant value.  相似文献   
72.
Host–guest complexes are formed by the creation of multiple noncovalent bonds between a large molecule (the host) and smaller molecule(s) or ion(s) (the guest(s)). Ion‐mobility separation coupled with mass spectrometry nowadays represents an ideal tool to assess whether the host–guest complexes, when transferred to the gas phase upon electrospray ionization, possess an exclusion or inclusion nature. Nevertheless, the influence of the solution conditions on the nature of the observed gas‐phase ions is often not considered. In the specific case of inclusion complexes, kinetic considerations must be taken into account beside thermodynamics; the guest ingression within the host cavity can be characterized by slow kinetics, which makes the complexation reaction kinetically driven on the timescale of the experiment. This is particularly the case for the cucurbituril family of macrocyclic host molecules. Herein, we selected para‐phenylenediamine and cucurbit[6]uril as a model system to demonstrate, by means of ion mobility and collision‐induced dissociation measurements, that the inclusion/exclusion topology ratio varies as a function of the equilibration time in solution prior to the electrospray process.  相似文献   
73.
Two novel and well‐defined polymers, poly[6‐(5‐(diphenylamino)‐2‐((4‐methoxyphenyl)diazenyl)phenoxy)hexyl methacrylate] (PDMMA) and poly[6‐(4‐((3‐ethynylphenyl)diazenyl) phenoxy)hexyl methacrylate] (PDPMMA), which bear triphenylamine (TPA) incorporated to azobenzene either directly (PDMMA) or with an interval (PDPMMA) as pendant groups were successfully prepared via reversible addition‐fragmentation chain transfer polymerization technique. The electrochemical behaviors of PDPMMA and PDMMA were investigated by cyclic voltammograms (CV) measurement. The hole mobilities of the polymer films were determined by fitting the J‐V (current‐voltage) curve into the space‐charge‐limited current method. The influence of photoisomerization of the azobenzene moiety on the behaviors of fluorescence emission, CV and hole mobilities of these two polymers were studied. The fluorescent emission intensities of these two polymers in CH2Cl2 were increased by about 100 times after UV irradiation. The oxidation peak currents (IOX) of the PDMMA and PDPMMA in CH2Cl2 were increased after UV irradiation. The photoisomerization of the azobenzene moiety in PDMMA had significant effect on the electrochemical behavior, compared with that in PDPMMA. The changes of the hole mobility before and after UV irradiation were very small for both polymers. The HOMO energies (EHOMO, HOMO: the highest occupied molecular orbital) of side chain moieties of TPA incorporated with cis‐isomer and trans‐isomer of azobenzene in PDMMA and PDPMMA were obtained by theoretical calculation, which are basically consistent with the experimental results. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
74.
Abstract

In this paper, we report the influence of the mode of deformation on recrystallisation kinetics through experiments, theory and a phase field model. Ni samples of 99.6% purity are subjected to torsion and rolling at two equivalent plastic strains and the recrystallisation kinetics and microstructure are compared experimentally. Due to significant differences in the distributions of the nuclei and stored energy for the same equivalent strain, large differences are observed in the recrystallisation kinetics of rolled and torsion-tested samples. Next, a multi-phase field model is developed in order to understand and predict the kinetics and microstructural evolution. The coarse-grained free energy parameters of the phase field model are taken to be a function of the stored energy. In order to account for the observed differences in recrystallisation kinetics, the phase field mobility parameter is a required constitutive input. The mobility is calculated by developing a mean field model of the recrystallisation process assuming that the strain free nuclei grow in a uniform stored energy field. The activation energy calculated from the mobilities obtained from the mean field calculation compares very well with the activation energy obtained from the kinetics of recrystallisation. The recrystallisation kinetics and microstructure as characterised by grain size distribution obtained from the phase field simulations match the experimental results to good accord. The novel combination of experiments, phase field simulations and mean field model facilitates a quantitative prediction of the microstructural evolution and kinetics.  相似文献   
75.
76.
We present a rather generic model for toxin (ricin) inhibition of protein biosynthesis in eukaryotic cells. We also study reduction of the ricin toxic effects with application of antibodies against the RTB subunit of ricin molecules. Both species initially are delivered extracellularly. The model accounts for the pinocytotic and receptor-mediated toxin endocytosis and the intact toxin exocytotic removal out of the cell. The model also includes the lysosomal toxin destruction, the intact toxin motion to the endoplasmic reticulum (ER) for separation of its molecules into the RTA and RTB subunits, and the RTA chain translocation into the cytosol. In the cytosol, one portion of the RTA undergoes degradation via the ERAD. The other its portion can inactivate ribosomes at a large rate. The model is based on a system of deterministic ODEs. The influence of the kinetic parameters on the protein concentration and antibody protection factor is studied in detail.  相似文献   
77.
78.
《Comptes Rendus Mecanique》2019,347(8):601-614
During machining processes, materials undergo severe deformations that lead to different behavior than in the case of slow deformation. The microstructure changes, as a consequence, affect the materials properties and therefore influence the functionality of the component. Developing material models capable of capturing such changes is therefore critical to better understand the interaction process–materials. In this paper, we introduce a new physics model associating Mechanical Threshold Stress (MTS) with Dislocation Density (DD) models. The modeling and the experimental results of a series of large strain experiments on polycrystalline copper (OFHC) involving sequences of shear deformation and strain rate (varying from quasi-static to dynamic) are very similar to those observed in processes such as machining. The Kocks–Mecking model, using the mechanical threshold stress as an internal state variable, correlates well with experimental results and strain rate jump experiments. This model was compared to the well-known Johnson–Cook model that showed some shortcomings in capturing the stain jump. The results show a high effect of rate sensitivity of strain hardening at large strains. Coupling the mechanical threshold stress dislocation density (MTS–DD), material models were implemented in the Abaqus/Explicit FE code. The model shows potentialities in predicting an increase in dislocation density and a reduction in cell size. It could ideally be used in the modeling of machining processes.  相似文献   
79.
In the United States, the NATO Reference Mobility Model (NRMM) has been used for evaluating military ground vehicle mobility and the Vehicle Cone Index (VCI) has been selected as a mobility metric. VCI represents the minimum soil strength required for a vehicle to consistently make a specific number of passes, usually one or fifty passes. In the United Kingdom, the Mean Maximum Pressure (MMP) has been adopted as a metric for assessing military vehicle cross-country mobility. MMP is the mean value of the maxima occurring under all the wheel stations of a vehicle. Both VCI and MMP are empirically based. This paper presents a review of the basis upon which VCI and MMP were developed, as well as their applications to evaluating vehicle mobility in practice. With the progress in terramechanics and in modelling and simulation techniques in recent years, there is a growing desire to develop physics-based mobility metrics for next generation vehicle mobility models. Based on the review, criteria for selecting physics-based mobility metrics are proposed. Following these criteria, metrics for characterizing military vehicle traction limits and traversability on a given operating area are recommended.  相似文献   
80.
A new, simple and low‐cost method for patterning hydrophobic barriers in porous support such as paper by Parafilm® has been introduced. This method is then used for electrochemical paper‐based ammonia sensor construction. Ammonia sensor is based on electrochemical concentration cell which ammonia reaction with electrolyte in halves cell caused in concentration gradient and therefore potential difference dependent on ammonia concentration. The effect of concentrations of the involved chemicals, time periods of the required processes, the presence of Faraday cage as well as the effects of different salts used in the salt bridge on the response of the sensor, were investigated in order to find the optimized conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号