首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   305篇
  免费   6篇
  国内免费   23篇
化学   144篇
晶体学   2篇
力学   5篇
数学   6篇
物理学   177篇
  2024年   2篇
  2023年   16篇
  2022年   13篇
  2021年   7篇
  2020年   15篇
  2019年   7篇
  2018年   9篇
  2017年   19篇
  2016年   8篇
  2015年   8篇
  2014年   19篇
  2013年   10篇
  2012年   9篇
  2011年   22篇
  2010年   19篇
  2009年   21篇
  2008年   11篇
  2007年   23篇
  2006年   19篇
  2005年   11篇
  2004年   7篇
  2003年   7篇
  2002年   2篇
  2001年   2篇
  2000年   5篇
  1999年   1篇
  1998年   5篇
  1997年   6篇
  1996年   2篇
  1995年   6篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1973年   1篇
排序方式: 共有334条查询结果,搜索用时 37 毫秒
331.
The core task for Mott insulators includes how rigid distributions of electrons evolve and how these induce exotic physical phenomena. However, it is highly challenging to chemically dope Mott insulators to tune properties. Herein, we report how to tailor electronic structures of the honeycomb Mott insulator RuCl3 employing a facile and reversible single-crystal to single-crystal intercalation process. The resulting product (NH4)0.5RuCl3⋅1.5 H2O forms a new hybrid superlattice of alternating RuCl3 monolayers with NH4+ and H2O molecules. Its manipulated electronic structure markedly shrinks the Mott–Hubbard gap from 1.2 to 0.7 eV. Its electrical conductivity increases by more than 103 folds. This arises from concurrently enhanced carrier concentration and mobility in contrary to the general physics rule of their inverse proportionality. We show topotactic and topochemical intercalation chemistry to control Mott insulators, escalating the prospect of discovering exotic physical phenomena.  相似文献   
332.
333.
Sn perovskite solar cells have been regarded as one of the most promising alternatives to the Pb-based counterparts due to their low toxicity and excellent optoelectronic properties. However, the Sn perovskites are notorious to feature heavy p-doping characteristics and possess abundant vacancy defects, which result in under-optimized interfacial energy level alignment and severe nonradiative recombination. Here, we reported a synergic “electron and defect compensation” strategy to simultaneously modulate the electronic structures and defect profiles of Sn perovskites via incorporating a traced amount (0.1 mol %) of heterovalent metal halide salts. Consequently, the doping level of modified Sn perovskites was altered from heavy p-type to weak p-type (i.e. up-shifting the Fermi level by ∼0.12 eV) that determinately reducing the barrier of interfacial charge extraction and effectively suppressing the charge recombination loss throughout the bulk perovskite film and at relevant interfaces. Pioneeringly, the resultant device modified with electron and defect compensation realized a champion efficiency of 14.02 %, which is ∼46 % higher than that of control device (9.56 %). Notably, a record-high photovoltage of 1.013 V was attained, corresponding to the lowest voltage deficit of 0.38 eV reported to date, and narrowing the gap with Pb-based analogues (∼0.30 V).  相似文献   
334.
Carrier transport is an equally decisive factor as carrier separation for elevating photocatalytic efficiency. However, limited by indefinite structures and low crystallinities, studies on enhancing carrier transport of organic photocatalysts are still in their infancy. Here, we develop an σ-linkage length modulation strategy to enhance carrier transport in imidazole-alkyl-perylene diimide (IMZ-alkyl-PDI, corresponding to D-σ-A) photocatalysts by controlling π–π stacking distance. Ethyl-linkage can shorten π–π stacking distance (3.19 Å) the most among IMZ-alkyl-PDIs (where alkyl=none, ethyl, and n-propyl) via minimizing steric hindrance between D and A moieties, which leads to the fastest carrier transport rates. Thereby, IMZ-ethyl-PDI exhibits remarkable enhancement in phenol degradation with 32-fold higher rates than IMZ-PDI, as well as the oxygen evolution rate (271-fold increased). In microchannel reactors, IMZ-ethyl-PDI also presents 81.5 % phenol removal with high-flux surface hydraulic loading (44.73 L m−2 h−1). Our findings provide a promising molecular design guideline for high-performance photocatalysts and elucidate crucial internal carrier transport mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号