全文获取类型
收费全文 | 10563篇 |
免费 | 1564篇 |
国内免费 | 1096篇 |
专业分类
化学 | 10348篇 |
晶体学 | 84篇 |
力学 | 90篇 |
综合类 | 27篇 |
数学 | 9篇 |
物理学 | 2665篇 |
出版年
2024年 | 25篇 |
2023年 | 191篇 |
2022年 | 486篇 |
2021年 | 538篇 |
2020年 | 718篇 |
2019年 | 579篇 |
2018年 | 530篇 |
2017年 | 583篇 |
2016年 | 794篇 |
2015年 | 764篇 |
2014年 | 860篇 |
2013年 | 1015篇 |
2012年 | 894篇 |
2011年 | 890篇 |
2010年 | 682篇 |
2009年 | 694篇 |
2008年 | 616篇 |
2007年 | 553篇 |
2006年 | 455篇 |
2005年 | 335篇 |
2004年 | 229篇 |
2003年 | 210篇 |
2002年 | 161篇 |
2001年 | 138篇 |
2000年 | 90篇 |
1999年 | 73篇 |
1998年 | 40篇 |
1997年 | 17篇 |
1996年 | 15篇 |
1995年 | 10篇 |
1994年 | 7篇 |
1993年 | 3篇 |
1992年 | 6篇 |
1991年 | 3篇 |
1990年 | 8篇 |
1989年 | 2篇 |
1986年 | 1篇 |
1985年 | 2篇 |
1984年 | 1篇 |
1983年 | 3篇 |
1979年 | 1篇 |
1978年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 14 毫秒
1.
Thorsten Brand Kyle Ratinac Jeffrey V. Castro Robert G. Gilbert 《Journal of polymer science. Part A, Polymer chemistry》2004,42(22):5706-5713
A method was developed for free‐radical polymerization in the confines of a hollow latex particle. Hollow particles were prepared via the dynamic swelling method from polystyrene seed and divinylbenzene and had hollows of 500–1000 nm. So that these hollow poly(divinylbenzene) particles could function as submicrometer reactors, the particles were filled with a monomer (N‐isopropylacrylamide) via the dispersion of the dried particles in the molten monomer. The monomer that was not contained in the hollows was removed by washing and gentle abrasion. Free‐radical polymerization was then initiated by γ radiolysis in the solid state. Transmission electron microscopy showed that poly(N‐isopropylacrylamide) formed in the hollow interior of the particles, which functioned as submicrometer reactors. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5706–5713, 2004 相似文献
2.
Ecaterina Stela Dragan Simona Schwarz 《Journal of polymer science. Part A, Polymer chemistry》2004,42(10):2495-2505
The formation and characterization of some interpolyelectrolyte complex (IPEC) nanoparticles based on poly(sodium 2‐acrylamido‐2‐methylpropanesulfonate) (NaPAMPS), as a function of the polycation structure, polyanion molar mass, and polyion concentration, were followed in this work. Poly(diallyldimethylammonium chloride) and two polycations (PCs) containing (N,N‐dimethyl‐2‐hydroxypropyleneammonium chloride) units in the backbone (PCA5 and PCA5D1) were used as starting polyions. The complex stoichiometry, (n?/n+)iso, was pointed out by optical density at 500 nm (OD500), polyelectrolyte titration, and dynamic light scattering. IPEC nanoparticle sizes were influenced by the polycation structure and polyanion molar mass only before the complex stoichiometry, which was higher for the more hydrophilic polycations (PCA5 and PCA5D1) and for a higher NaPAMPS molar mass, and were almost independent of these factors after that, at a flow rate of the added polyion of about 0.28 mL × (mL PC)?1 × h?1. The IPEC nanoparticle sizes remained almost constant for more than 2 weeks, both before and after the complex stoichiometry, at low concentrations of polyions. NIPECs as stable colloidal dispersions with positive charges in excess were prepared at a ratio between charges (n?/n+) of 0.7, and their storage colloidal stability, as a function of the polycation structure and polyion concentration (from 0.8 to ca. 7.8 mmol/L), was demonstrated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2495–2505, 2004 相似文献
3.
Alvaro Carrillo Ravi S. Kane 《Journal of polymer science. Part A, Polymer chemistry》2004,42(13):3352-3359
This article describes the formation and characterization of self‐assembled nanoparticles of controlled sizes based on amphiphilic block copolymers synthesized by ring‐opening metathesis polymerization. We synthesized a novel hydrophobic derivative of norbornene; this monomer could be polymerized using Grubbs' catalyst [Cl2Ru(CHPh)(PCy3)2] forming polymers of controlled molecular weight. We synthesized amphiphilic block copolymers of controlled composition and showed that they assemble into nanoparticles of controlled size. The nanoparticles were characterized using dynamic light scattering and transmission electron microscopy. Tuning the composition of the block copolymer enables the tuning of the diameters of the nanoparticles in the 30‐ to 80‐nm range. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3352–3359, 2004 相似文献
4.
T. Ramanathan S. Stankovich D. A. Dikin H. Liu H. Shen S. T. Nguyen L. C. Brinson 《Journal of Polymer Science.Polymer Physics》2007,45(15):2097-2112
Mechanical, thermal, and electrical properties of graphite/PMMA composites have been evaluated as functions of particle size and dispersion of the graphitic nanofiller components via the use of three different graphitic nanofillers: “as received graphite” (ARG), “expanded graphite,” (EG) and “graphite nanoplatelets” (GNPs) EG, a graphitic materials with much lower density than ARG, was prepared from ARG flakes via an acid intercalation and thermal expansion. Subsequent sonication of EG in a liquid yielded GNPs as thin stacks of graphitic platelets with thicknesses of ~10 nm. Solution‐based processing was used to prepare PMMA composites with these three fillers. Dynamic mechanical analysis, thermal analysis, and electrical impedance measurements were carried out on the resulting composites, demonstrating that reduced particle size, high surface area, and increased surface roughness can significantly alter the graphite/polymer interface and enhance the mechanical, thermal, and electrical properties of the polymer matrix. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2097–2112, 2007 相似文献
5.
Kyung Hwa Hong Jong Lyoul Park In Hwan Sul Ji Ho Youk Tae Jin Kang 《Journal of Polymer Science.Polymer Physics》2006,44(17):2468-2474
Polyvinyl alcohol (PVA) nanofibers containing Ag nanoparticles were prepared by electrospinning PVA/silver nitrate (AgNO3) aqueous solutions, followed by short heat treatment, and their antimicrobial activity was investigated for wound dressing applications. Since PVA is a water soluble and biocompatible polymer, it is one of the best materials for the preparation of wound dressing nanofibers. After heat treatment at 155 °C for 3 min, the PVA/AgNO3 nanofibers became insoluble, while the Ag+ ions therein were reduced so as to produce a large number of Ag nanoparticles situated preferentially on their surface. The residual Ag+ ions were reduced by subsequent UV irradiation for 3 h. The average diameter of the Ag nanoparticles after the heat treatment was 5.9 nm and this value increased slightly to 6.3 nm after UV irradiation. It was found that most of the Ag+ ions were reduced by the simple heat treatment. The PVA nanofibers containing Ag nanoparticles showed very strong antimicrobial activity. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2468–2474, 2006 相似文献
6.
Benedict Ita P. Murugavel V. Ponnambalam A. R. Raju 《Journal of Chemical Sciences》2003,115(5-6):519-524
Fine powders of lanthanum iron oxide, LaFeO3, have been prepared by solid state reaction as well as sol-gel synthesis and nebulized spray pyrolysis. Structures, morphologies
and magnetic susceptibility measurements of these powders have been examined. The powders prepared by all the three low-temperature
routes contain nearly spherical particles with an average diameter of 40 nm. These samples show a lower Neel temperature than
the powder prepared by solid state reaction besides showing much lower magnetic susceptibility at low temperatures.
Dedicated to Professor C N R Rao on his 70th birthday 相似文献
7.
Hyeong Taek Ham Yeong Suk Choi Mu Guen Chee In Jae Chung 《Journal of polymer science. Part A, Polymer chemistry》2006,44(1):573-584
This work is to make carbon nanotubes dispersible in both water and organic solvents without oxidation and cutting nanotube threads. Polystyrene‐singlewall carbon nanotube (PS‐SWNT) composites were prepared with three different methods: miniemulsion polymerization, conventional emulsion polymerization, and mixing SWNT with PS latex. The two factors, crosslinking and surface coverage of PS are important factors for the mechanical and electrical properties, including dispersion states of SWNT in various solvents. The PS‐SWNT composite prepared via a conventional emulsion polymerization showed SWNT bundles entirely covered with PS, whereas the PS‐SWNT composite prepared via a miniemulsion polymerization showed SWNT partially covered with crosslinked PS nanoparticles. The method of mixing SWNTs with PS latex did not show the well dispersed state of carbon nanotubes because PS was not crosslinked and was dissolved in a solvent, and nanotubes separated from PS precipitated. So the PS nanoparticle‐SWNT composite had lower electrical resistance, and higher mechanical strength than the other composites made by the latter two methods. As the amount of SWNT increases, the bare surface area of SWNT increases and the electrical conductivity increases in the composite made by the miniemulsion polymerization. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 573–584, 2006 相似文献
8.
Rachel K. O'Reilly Maisie J. Joralemon Craig J. Hawker Karen L. Wooley 《Journal of polymer science. Part A, Polymer chemistry》2006,44(17):5203-5217
Block copolymer micelles and shell cross-linked nanoparticles (SCKs) presenting Click-reactive functional groups on their surfaces were prepared using two separate synthetic strategies, each employing functionalized initiators for the controlled radical polymerization of acrylate and styrenic monomers to afford amphiphilic block copolymers bearing an alkynyl or azido group at the α-terminus. The first route for the synthesis of the azide-functionalized nanostructures was achieved via sequential nitroxide-mediated radical polymerization (NMP) of tert-butyl acrylate and styrene, originating from a benzylic chloride-functionalized initiator, followed by deprotection of the acrylic acids, supramolecular assembly of the block copolymer in water and conversion of the benzylic chloride to a benzylic azide. In contrast, the second strategy utilized an alkynyl-functionalized reversible addition fragmentation transfer (RAFT) agent directly for the RAFT-based sequential polymerization of tetrahydropyran acrylate and styrene, followed by selective cleavage of the tetrahydropyran esters to give the α-alkynyl-functionalized block copolymers. These Click-functionalized polymers, with the functionality located at the hydrophilic polymer termini, were then self-assembled using a mixed-micelle methodology to afford surface-functionalized “Clickable” micelles in aqueous solutions. The optimum degree of incorporation of the Click-functionalized polymers was investigated and determined to be ca. 25%, which allowed for the synthesis of well-defined surface-functionalized nanoparticles after cross-linking selectively throughout the shell layer using established amidation chemistry. Functionalization of the chain ends was shown to be an efficient process under standard Click conditions and the resulting functional groups revealed a more “solution-like” environment when compared to the functional group randomly inserted into the hydrophilic shell layer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5203–5217, 2006 相似文献
9.
Kozo Matsumoto Junichi Nakashita Hideki Matsuoka 《Journal of polymer science. Part A, Polymer chemistry》2006,44(15):4696-4707
Diblock copolymer poly(1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane)‐block‐polystyrene (polyVSA‐b‐polySt) and triblock copolymer poly(1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane)‐block‐polystyrene‐block‐poly(1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane) (polyVSA‐b‐polySt‐b‐polyVSA), consisting of silazane and nonsilazane segments, were prepared by the living anionic polymerization of 1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane and styrene. PolyVSA‐b‐polySt formed micelles having a poly(1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane) (polyVSA) core in N,N‐dimethylformamide, whereas polyVSA‐b‐polySt and polyVSA‐b‐polySt‐b‐polyVSA formed micelles having a polyVSA shell in n‐heptane. The micelles with a polyVSA core were core‐crosslinked by UV irradiation in the presence of diethoxyacetophenone as a photosensitizer, and the micelles with a polyVSA shell were shell‐crosslinked by UV irradiation in the presence of diethoxyacetophenone and 1,6‐hexanedithiol. These crosslinked micelles were pyrolyzed at 600 °C in N2 to give spherical ceramic particles. The pyrolysis process was examined by thermogravimetry and thermogravimetry/mass spectrometry. The morphologies of the particles were analyzed by atomic force microscopy and transmission electron microscopy. The chemical composition of the pyrolysis products was analyzed by X‐ray fluorescence spectroscopy and Raman scattering spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4696–4707, 2006 相似文献
10.
Dilyana Paneva Laetitia Mespouille Nevena Manolova Philippe Dege Iliya Rashkov Philippe Dubois 《Journal of polymer science. Part A, Polymer chemistry》2006,44(19):5468-5479
Polyelectrolyte complexes (PECs) have been prepared from well‐defined (quaternized) poly[2‐(dimethylamino)ethyl methacrylate] (PDMAEMA) and high molecular weight poly(2‐acrylamido‐2‐methylpropane sodium sulfonate) (PAMPSNa) after a thorough study of their viscometric properties. The effect of pH and quaternization degree of PDMAEMA on PECs stoichiometry has been examined. PEC‐based materials have been characterized in terms of thermal stability, equilibrium swelling degree, and free/bound water composition. The stoichiometry and swellability of the physically crosslinked hydrogels obtained from fully quaternized PDMAEMA/PAMPSNa complexes do not depend on pH. In contrast, PECs made of non quaternized PDMAEMA and PAMPSNa are highly affected by pH, and could reversibly disintegrate at pH ≥ 9. Partially quaternized PDMAEMA/PAMPSNa PECs exhibit intermediate properties and form stable loose structures in the whole investigated pH range. Finally, stable dispersions of PECs nanoparticles have been successfully produced from dilute solutions of the complementary polyelectrolytes. The nanoparticle average diameter as determined by dynamic light scattering proved to depend on the molar fraction of DMAEMA‐based subunits and on the initial polyelectrolyte concentration. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5468–5479, 2006 相似文献