全文获取类型
收费全文 | 361篇 |
免费 | 73篇 |
国内免费 | 94篇 |
专业分类
化学 | 400篇 |
晶体学 | 25篇 |
力学 | 12篇 |
综合类 | 15篇 |
数学 | 2篇 |
物理学 | 74篇 |
出版年
2025年 | 8篇 |
2024年 | 13篇 |
2023年 | 26篇 |
2022年 | 30篇 |
2021年 | 24篇 |
2020年 | 30篇 |
2019年 | 25篇 |
2018年 | 16篇 |
2017年 | 17篇 |
2016年 | 20篇 |
2015年 | 20篇 |
2014年 | 34篇 |
2013年 | 27篇 |
2012年 | 31篇 |
2011年 | 16篇 |
2010年 | 17篇 |
2009年 | 14篇 |
2008年 | 20篇 |
2007年 | 15篇 |
2006年 | 12篇 |
2005年 | 14篇 |
2004年 | 16篇 |
2003年 | 10篇 |
2002年 | 12篇 |
2001年 | 8篇 |
2000年 | 6篇 |
1999年 | 6篇 |
1998年 | 10篇 |
1997年 | 3篇 |
1996年 | 2篇 |
1995年 | 2篇 |
1994年 | 2篇 |
1993年 | 3篇 |
1992年 | 4篇 |
1991年 | 7篇 |
1990年 | 3篇 |
1989年 | 5篇 |
排序方式: 共有528条查询结果,搜索用时 0 毫秒
61.
62.
由糠醛与水杨酰肼反应合成糠醛水杨酰腙席夫碱,然后再将其分别与过渡金属锌(Ⅱ)和铅(Ⅱ)作用合成两种新型的酰腙席夫碱配合物,并通过元素分析、紫外光谱、红外光谱等方法对所制备配合物进行表征。 相似文献
63.
采用有机单体侧链嫁接2,2,6,6-四甲基哌啶氧自由基(2,2,6,6-tetramethylpiperidineoxyl,TEMPO)的策略将TEMPO嫁接到2,5-二溴苯甲酸侧链,并与四(4-乙炔基苯)甲烷通过Sonogashira偶联反应,构筑TEMPO自由基功能化共轭微孔聚合物CMP-4-TEMPO.利用核磁共振谱(NMR)、扫描电子显微镜(SEM)、粉末X-射线衍射(XRD)红外吸收光谱(FT-IR)和电子顺磁共振谱(EPR)等技术研究了所合成单体及CMP形貌和结构.催化性能测试结果表明CMP-4-TEMPO可将5-羟甲基糠醛(5-HMF)高效、高选择性氧化成高附加值2,5-二甲酰基呋喃(2,5-DFF).CMP-4-TEMPO催化剂循环利用10次仍保持较高的转化率.提出了CMP-4-TEMPO中形成TEMPO氧正离子是实现5-HMF转化为2,5-DEF的催化氧化机理.CMP-4-TEMPO有望成为各种醇高效、高选择性氧化以及可循环利用的异相催化剂. 相似文献
64.
采用灰熔点较低的神华煤和较高的准格尔煤以及这两种煤组成的混煤在沉降炉内进行实验,模拟实际电站锅炉内结渣的形成过程。采用SEM、XRD技术对煤粉和灰渣的微观形貌和晶相成分进行分析。结果表明,准格尔煤粉中包含的大量高岭石和勃姆石为莫来石的大量生成提供了条件,神华煤中不含勃姆石,高岭石的含量也不多,莫来石的生成量很少。莫来石在高温下遇到石灰石的分解产物CaO,要与之反应生成钙长石,这是神华煤灰渣中没有检测到莫来石衍射峰的主要原因。莫来石是一种高熔点矿物(1850℃),能显著改善煤灰的熔融温度,神华煤灰渣中不含莫来石,灰渣中缺少大量能在其熔融过程中发挥“骨架”作用的成分,这是导致神华煤灰熔融温度较低的一个重要原因。 相似文献
65.
采用化学还原法在不同介质中制备了5种Co-B非晶态合金催化剂,反应介质包括水、乙醇以及不同乙醇含量的乙醇-水混合溶液,并以液相糠醛加氢制备糠醇为探针反应考察了其催化性能。结果表明,反应介质对Co-B催化剂的非晶态结构以及金属Co-B间的电子相互作用没有显著影响。这可以解释所有制得的Co-B催化剂均具有几乎100%的糠醇选择性和相同的面积比活性的原因,根据活性位性质保持不变可认为其本征活性相同。但是,随着水-乙醇混合反应介质中乙醇含量增加,制得的Co-B催化剂的质量比活性迅速增加。这可以归因于大量氧化态硼物种的存在造成的表面积迅速增加,因为氧化态硼物种可以作为载体对Co-B非晶态合金粒子起到分散作用。 相似文献
66.
对克拉玛依减渣进行适度热转化,确定了其裂解深度最大且不结焦的条件。利用超临界萃取分馏技术,将克拉玛依减渣及其热转化残渣油分离成一系列窄馏分和萃余残渣,对窄馏分及萃余残渣的性质(相对分子质量、密度、残炭、C、H、N、S元素和金属元素等)进行了表征。用改进的方法测定了萃余残渣的溶解度参数,并根据性质计算了各个窄馏分的溶解度参数,克拉玛依减渣及其热转化残渣油萃余残渣的溶解度参数分别为18.27 MPa1/2和19.79 MPa1/2;从溶解度参数的角度解释了渣油加工过程中的分相、结焦等问题。 相似文献
67.
68.
Cu-Zn/γ-Al2O3催化剂的制备及其在选择加氢反应中的催化性能 总被引:4,自引:0,他引:4
通过浸渍法制备了不同Cu/Zn比的γ-Al2O3和改性γ-Al2O3负载的Cu-Zn催化剂,并用XRD,XPS和SEM等手段对催化剂进行了表征.XRD表征结果表明,还原活化前催化剂中的Cu和Zn分别以CuO和ZnO的形式存在;还原活化后Cu以单质的形式存在;催化剂失活后,单质Cu又转变成CuO.XPS和SEM分析结果表明,催化剂中金属的价态及颗粒的形貌在反应前后发生了变化.所制备的催化剂在糠醛加氢制糠醇反应中表现出较高的选择性.用Co改性的γ-Al2O3负载的Cu-Zn催化剂不仅具有较高的催化活性和选择性,而且还呈现出较长的寿命.催化剂中的Cu晶相是催化活性中心;催化剂中的Cu晶相转变成CuO和烧结是催化剂失活的主要原因. 相似文献
69.
70.
超级活性炭的合成及活化反应机理 总被引:25,自引:0,他引:25
以石油焦为原料,采用碱熔活化法合成出具有超高比表面的超级活性炭.借助XRD、TG DTA、N2吸附实验等手段,对其结构与性能进行了表征.同时,设计原位TG DTA测试技术、反应快速终止技术,对超级活性炭合成机理进行了考察,提出了两段活化反应机理,即中温径向活化机理和高温横向活化机理.发现K2O、-O-K+以及-CO-2K+是径向活化为主的中温活化段的活化剂活性组分,而处于熔融状态的K+O-、K+则是横向活化为主的高温活化段的催化活性组分.并发现径向活化是超级活性炭形成发达微孔分布的主要途径,也是控制超级活性炭微孔分布的主要手段.而高温横向活化机理则是导致超级活性炭形成大孔的主要途径.高温横向活化与中温径向活化一起构成石油焦基超级活性炭形成的主要机理. 相似文献