首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   3篇
  国内免费   2篇
化学   66篇
综合类   1篇
物理学   8篇
  2023年   4篇
  2022年   3篇
  2021年   32篇
  2020年   4篇
  2019年   3篇
  2017年   5篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2013年   5篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
排序方式: 共有75条查询结果,搜索用时 15 毫秒
1.
The identification of biomarkers would be of benefit for the diagnosis and treatment of colorectal cancer. DNA methylation in specific genomic regions, which had shown strongly association with disease genotypes, was an effective indicator to reveal the occurrence and development of cancers. To screen out methylation biomarkers for colorectal cancer (CRC), genomic DNA was isolated from colorectal cancerous and corresponding cancer‐adjacent tissues collected from 30 CRC patients and then bisulfite‐converted. The exon regions of 5 targeted genes (CNRIP1 , HIC1 , RUNX3 , p15 , and SFRP2 ) were amplified by using nested polymerase chain reaction with specific primers, and the amplicon was purified and hydrolyzed. The methylation levels of these specific regions were detected by liquid chromatography tandem mass spectrometry (LC‐MS/MS). The results showed that 5 targeted exon regions were successfully amplified and confirmed by sequencing. The methodological validations indicated that LC‐MS/MS was highly sensitive and accurate. The methylation levels of CNRIP1 and RUNX3 were remarkably high in CRC tissues with statistical difference when compared with corresponding cancer‐adjacent individuals, while that of HIC1 , p15 , and SFRP2 had no difference between 2 subjects. These findings supported CNRIP1 and RUNX3 as potential DNA methylation biomarkers for CRC diagnosis and treatment, and our LC‐MS/MS approach exhibited great advantages in the identification of regional DNA methylation biomarkers.  相似文献   
2.
Postbiotics are health-promoting microbial metabolites delivered as a functional food or a food supplement. They either directly influence signaling pathways of the body or indirectly manipulate metabolism and the composition of intestinal microflora. Cancer is the second leading cause of death worldwide and even though the prognosis of patients is improving, it is still poor in the substantial part of the cases. The preventable nature of cancer and the importance of a complex multi-level approach in anticancer therapy motivate the search for novel avenues of establishing the anticancer environment in the human body. This review summarizes the principal findings demonstrating the usefulness of both natural and synthetic sources of postbotics in the prevention and therapy of cancer. Specifically, the effects of crude cell-free supernatants, the short-chain fatty acid butyrate, lactic acid, hydrogen sulfide, and β-glucans are described. Contradictory roles of postbiotics in healthy and tumor tissues are highlighted. In conclusion, the application of postbiotics is an efficient complementary strategy to combat cancer.  相似文献   
3.
Low band gap D‐A conjugated PNs consisting of 2‐ethylhexyl cyclopentadithiophene co‐polymerized with 2,1,3‐benzothiadiazole (for nano‐PCPDTBT) or 2,1,3‐benzoselenadiazole (for nano‐PCPDTBSe) have been developed. The PNs are stable in aqueous media and showed no significant toxicity up to 1 mg · mL?1. Upon exposure to 808 nm light, the PNs generated temperatures above 50 °C. Photothermal ablation studies of the PNs with RKO and HCT116 colorectal cancer cells were performed. At concentrations above 100 µg · mL?1 for nano‐PCPDTBSe, cell viability was less than 20%, while at concentrations above 62 µg · mL?1 for nano‐PCPDTBT, cell viability was less than 10%. The results of this work demonstrate that low band gap D‐A conjugated polymers 1) can be formed into nanoparticles that are stable in aqueous media; 2) are non‐toxic until stimulated by IR light and 3) have a high photothermal efficiency.

  相似文献   

4.
The pathogenesis of colorectal cancer is a multifactorial process. Dysbiosis and the overexpression of COX-2 and LDHA are important effectors in the initiation and development of the disease through chromosomal instability, PGE2 biosynthesis, and induction of the Warburg effect, respectively. Herein, we report the in vitro testing of some new quinoxalinone and quinazolinone Schiff’s bases as: antibacterial, COX-2 and LDHA inhibitors, and anticolorectal agents on HCT-116 and LoVo cells. Moreover, molecular docking and SAR analyses were performed to identify the structural features contributing to the biological activities. Among the synthesized molecules, the most active cytotoxic agent, (6d) was also a COX-2 inhibitor. In silico ADMET studies predicted that (6d) would have high Caco-2 permeability, and %HIA (99.58%), with low BBB permeability, zero hepatotoxicity, and zero risk of sudden cardiac arrest, or mutagenicity. Further, (6d) is not a potential P-gp substrate, instead, it is a possible P-gpI and II inhibitor, therefore, it can prevent or reverse the multidrug resistance of the anticancer drugs. Collectively, (6d) can be considered as a promising lead suitable for further optimization to develop anti-CRC agents or glycoproteins inhibitors.  相似文献   
5.
Colorectal cancer (CRC) is the third commonest malignancy cancer worldwide. Clear understandings of global metabolic profiling of the normal mucosa and cancer tissues are vitally important to aid optimizing the clinical management strategy and understanding CRC biology. We studied metabolic characteristics of 20 CRC and 20 distant normal mucosa tissues extracts from 20 patients using high resolution 1H NMR spectroscopy in conjunction with multivariate analyses, such as principal component analysis (PCA). Compared with distant normal mucosa tissues, lactate, taurine, ornithine and polyamine were present at significantly higher levels in CRC tissue extracts whereas myo‐inositol was present at significantly lower level. Two metabolites ratios such as myo‐inositol/taurine and myo‐inositol/(ornithine+polyamine) appear to be the most valuable biomarkers for the differentiation CRC from normal mucosa tissues. Our data suggested that HR 1H NMR spectroscopy combined with multivariate analyses is a potentially useful technology for detecting malignant changes in the normal mucosa tissues, the technique may be further exploited for future CRC biomarker research or identification of targets for therapeutic manipulations.  相似文献   
6.
Colorectal cancer is one of the life-threatening ailments causing high mortality and morbidity worldwide. Despite the innovation in medical genetics, the prognosis for metastatic colorectal cancer in patients remains unsatisfactory. Recently, lichens have attracted the attention of researchers in the search for targets to fight against cancer. Lichens are considered mines of thousands of metabolites. Researchers have reported that lichen-derived metabolites demonstrated biological effects, such as anticancer, antiviral, anti-inflammatory, antibacterial, analgesic, antipyretic, antiproliferative, and cytotoxic, on various cell lines. However, the exploration of the biological activities of lichens’ metabolites is limited. Thus, the main objective of our study was to evaluate the anticancer effect of secondary metabolites isolated from lichen (Usnea barbata 2017-KL-10) on the human colorectal cancer cell line HCT116. In this study, 2OCAA exhibited concentration-dependent anticancer activities by suppressing antiapoptotic genes, such as MCL-1, and inducing apoptotic genes, such as BAX, TP53, and CDKN1A(p21). Moreover, 2OCAA inhibited the migration and invasion of colorectal cancer cells in a concentration-dependent manner. Taken together, these data suggest that 2OCAA is a better therapeutic candidate for colorectal cancer.  相似文献   
7.
This report presents a new library of organometallic iridium(III) compounds of the type [Cp*IrCl(L)] (Cp*=pentamethylcyclopentadienyl and L=a functionalized β-ketoiminato ligand) showing moderate to high cytotoxicity against a range of cancer cell lines. All compounds show increased activity towards colorectal cancer, with preferential activity observed against the immortalized p53-null colorectal cell line, HCT116 p53-/-, with sensitivity factors (SF) up to 26.7. Additionally, the compounds have excellent selectivity for cancerous cells when tested against normal cell types, with selectivity ratios (SR) up to 35.6, contrary to that of cisplatin, which is neither selective nor specific for cancerous cells (SF=0.43 and SR=0.7–2.3). This work provides a preliminary understanding of the cytotoxicity of iridium compounds in the absence of p53 and has potential applications in treatment of cancers for which the p53 gene is absent or mutant.  相似文献   
8.
From the first experiments with biomaterials to mimic tissue properties, the mechanical and biochemical characterization has evolved extensively. Several properties can be described, however, what should be essential is to conduct a proper and physiologically relevant characterization. Herein, the influence of the reaction media (RM) and swelling media (SM)–phosphate buffered saline (PBS) and Dulbecco's modified Eagle's medium (DMEM) with two different glucose concentrations–is described in gelatin methacrylamide (GelMA) hydrogel mechanics and in the biological behavior of two tumoral cell lines (Caco-2 and HCT-116). All scaffolds are UV-photocrosslinked under identical conditions and evaluated for mass swelling ratio and stiffness. The results indicate that stiffness is highly susceptible to the RM, but not to the SM. Additionally, PBS-prepared hydrogels exhibited a higher photopolymerization degree according to high resolution magic-angle spinning (HR-MAS) NMR. These findings correlate with the biological response of Caco-2 and HCT-116 cells seeded on the substrates, which demonstrated flatter morphologies on stiffer hydrogels. Overall, cell viability and proliferation are excellent for both cell lines, and Caco-2 cells displayed a characteristic apical-basal polarization based on F-actin/Nuclei fluorescence images. These characterization experiments highlight the importance of conducting mechanical testing of biomaterials in the same medium as cell culture.  相似文献   
9.
Mechanical interactions between cells and their microenvironment play an important role in determining cell fate, which is particularly relevant in metastasis, a process where cells invade tissue matrices with different mechanical properties. In vitro, type I collagen hydrogels have been commonly used for modeling the microenvironment due to its ubiquity in the human body. In this work, the combined influence of the stiffness of these hydrogels and their ultrastructure on the migration patterns of HCT-116 and HT-29 spheroids are analyzed. For this, six different types of pure type I collagen hydrogels by changing the collagen concentration and the gelation temperature are prepared. The stiffness of each sample is measured and its ultrastructure is characterized. Cell migration studies are then performed by seeding the spheroids in three different spatial conditions. It is shown that changes in the aforementioned parameters lead to differences in the mechanical stiffness of the matrices as well as the ultrastructure. These differences, in turn, lead to distinct cell migration patterns of HCT-116 and HT-29 spheroids in either of the spatial conditions tested. Based on these results, it is concluded that the stiffness and the ultrastructural organization of the matrix can actively modulate cell migration behavior in colorectal cancer spheroids.  相似文献   
10.
This study focuses on the fabrication, characterization and anticancer properties of biocompatible and biodegradable composite nanofibers consisting of poly(vinyl alcohol) (PVA), oxymatrine (OM), and citric acid (CA) using a facile and high-yield centrifugal spinning process known as Forcespinning. The effects of varying concentrations of OM and CA on fiber diameter and molecular cross-linking are investigated. The morphological and thermo-physical properties, as well as water absorption of the developed nanofiber-based mats are characterized using microscopical analysis, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. In vitro anticancer studies are conducted with HCT116 colorectal cancer cells. Results show a high yield of long fibers embedded with beads. Fiber average diameters range between 462 and 528 nm depending on OM concentration. The thermal analysis results show that the fibers are stable at room temperature. The anticancer study reveals that PVA nanofiber membrane with high concentrations of OM can suppress the proliferation of HCT116 colorectal cancer cells. The study provides a comprehensive investigation of OM embedded into nanosized PVA fibers and the prospective application of these membranes as a drug delivery system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号