排序方式: 共有80条查询结果,搜索用时 0 毫秒
1.
2.
3.
物理演示实验在帮助学生理解物理理论、加深知识记忆、激发科学兴趣等方面有独特的作用。中国绝大部分的高校都建有物理演示实验室,中国矿业大学目前已建成3个物理演示实验大厅,有超过120套演示实验仪。本文探讨了中国矿业大学在物理演示实验资源有效利用方面进行的探索,比如让物理演示实验进理论课课堂常态化;让大学生参与物理演示实验仪的开发探究;对社会大众开放物理演示实验室等。分析了在探索物理演示实验资源有效利用时遇到的问题和困难,并给出了解决这些问题的可能方案。这些探讨有助于最大限度地发挥演示实验在辅助理论教学、培养学生的创新能力及宣扬科学精神等方面的作用,也可以为开设或即将开设物理演示实验的高校提供参考。 相似文献
4.
石墨烯等离激元是决定石墨烯光学性质的重要元激发,拥有一系列优异的特性,其通过外置电场的动态可调性最引人注目;石墨烯具有很强的磁场响应(如室温观测的量子霍尔效应),因而磁场可作为一个新的调控自由度,形成的准粒子叫作石墨烯磁等离激元.鉴于石墨烯的二维属性,石墨烯磁等离激元的研究大多采用三维近似,即将石墨烯等效成厚度很薄的三维块材,该处理方案需消耗大量的计算资源.本文在准静态近似下,围绕库仑定律和电荷守恒定律,构建了高效的二维有限元方法,自洽地求解石墨烯面内的积分微分方程,并提出本征值损失谱表征准粒子的激发.利用二维有限元方法,探讨了4类石墨烯环中磁等离激元的激发;最低阶的偶极共振都支持磁等离激元的对称劈裂,在孔很小时,其对模式劈裂的影响可忽略,但当孔的尺寸变大时,内外边界的相互作用将抑制模式劈裂,并最终导致其消失. 相似文献
5.
通过高温固相反应法制备了Ba0.85Ca0.15Ti0.90Zr0.10O3∶xSm3+(BCTZ∶xSm3+,x=0.0%、0.2%、0.4%、0.6%、0.8%、1.0%,物质的量分数)陶瓷,系统研究了其微观形貌、铁电性能、储能性能和光致发光性能。研究表明,Sm3+掺入后,陶瓷平均晶粒大小明显下降,致密度显著提高。所有陶瓷均表现出典型的铁电性。BCTZ∶xSm3+陶瓷放电储能密度得到了极大的提高,BCTZ∶1.0% Sm3+陶瓷放电储能密度较纯BCTZ陶瓷可提高约49.0%。此外,在408 nm光的激发下,BCTZ∶xSm3+陶瓷在596 nm左右表现出强烈的橙红色发光,且发光强度相对可调性可达449%。 相似文献
6.
通过水热法,在黑磷(BP)纳米片表面生长FeOOH纳米材料,制备出FeOOH/BP纳米复合材料。作为电化学析氧反应(OER)催化剂,该复合材料在20 mA·cm-2时的过电位仅为191 mV,Tafel斜率为49.9 mV dec-1;在循环1 000圈后,过电位仅仅增加了3 mV,且循环过程中元素价态不变,表现出优秀的稳定性。纳米FeOOH负载于BP表面,客观上能隔断氧气对BP的氧化,保护BP的载流子传导性能。同时,生长的FeOOH颗粒尺度小,结晶性弱,这有利于丰富其活性位点,增大活性面积。 相似文献
7.
通过高温固相反应法制备了 Ba0.85Ca0.15Ti0.90Zr0.10O3∶xSm3+(BCTZ∶xSm3+,x=0.0%、0.2%、0.4%、0.6%、0.8%、1.0%,物质的量分数)陶瓷,系统研究了其微观形貌、铁电性能、储能性能和光致发光性能。研究表明,Sm3+掺入后,陶瓷平均晶粒大小明显下降,致密度显著提高。所有陶瓷均表现出典型的铁电性。BCTZ∶xSm3+陶瓷放电储能密度得到了极大的提高,BCTZ∶1.0%Sm3+陶瓷放电储能密度较纯BCTZ陶瓷可提高约49.02%。此外,在408 nm光的激发下,BCTZ∶xSm3+陶瓷在596 nm左右表现出强烈的橙红色发光,且发光强度相对可调性可达449%。 相似文献
8.
通过溶剂热并辅以硫化法制备了金属有机骨架(MOF)基镍钴双金属硫化物微球,并通过高温热解有机碳源盐酸多巴胺制备了痕量氮掺杂碳包覆(NC)的Ni-Co-S@NC钠离子电池负极材料。这种改性能够有效提高电极材料的导电性以及结构和界面的稳定性,从而提高材料的循环稳定性。其中表面包覆约5 nm碳层的Ni-Co-S@NC-0.5微球具有出色的长循环寿命,其在1A·g-1下循环 1 000 圈后,仍有 381.8 mAh·g-1的放电比容量和 75.2% 的容量保持率,相应地每圈循环的容量衰减量仅为 0.126mAh·g-1;Ni-Co-S@NC-0.5||NVP/C(NVP:Na3V2(PO4)3)钠离子全电池在 1 A·g-1下经过 100 次循环后,可逆放电比容量为 386.2mAh·g-1,容量保持率为88.6%,库仑效率稳定在98.1%左右。动力学研究表明,Ni-Co-S@NC-0.5的储钠过程以赝电容行为控制为主,钠离子扩散系数在10-11~10-13 cm2·s-1之间,同时具有相对小的电荷转移阻抗(36.7 Ω)。 相似文献
9.
10.