首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5755篇
  免费   375篇
  国内免费   629篇
化学   5680篇
晶体学   30篇
力学   180篇
综合类   2篇
数学   49篇
物理学   818篇
  2024年   12篇
  2023年   180篇
  2022年   105篇
  2021年   93篇
  2020年   241篇
  2019年   102篇
  2018年   139篇
  2017年   424篇
  2016年   287篇
  2015年   277篇
  2014年   274篇
  2013年   531篇
  2012年   426篇
  2011年   381篇
  2010年   351篇
  2009年   353篇
  2008年   416篇
  2007年   354篇
  2006年   335篇
  2005年   227篇
  2004年   182篇
  2003年   175篇
  2002年   157篇
  2001年   150篇
  2000年   112篇
  1999年   99篇
  1998年   68篇
  1997年   35篇
  1996年   31篇
  1995年   26篇
  1994年   27篇
  1993年   16篇
  1992年   26篇
  1991年   29篇
  1990年   24篇
  1989年   17篇
  1988年   42篇
  1987年   4篇
  1986年   7篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1979年   5篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1965年   1篇
排序方式: 共有6759条查询结果,搜索用时 218 毫秒
991.
Poly(butylene succinate-co-adipate) (PBSA)/poly (trimethylene carbonate) (PTMC) blend samples with different weight ratios were prepared by solution blending. The morphologies after isothermal crystallization and in the melt were observed by optical microscopy (OM). Differential scanning calorimetry (DSC) was used to characterize the isothermal crystallization kinetics and melting behaviors. According to the OM image before and after melting, it was found that the blends formed heterogenous morphologies. When the PTMC content was low (20%), PBSA formed the continuous phase, while when the PTMC contents was high (40%), PBSA formed the dispersed phase. The glass transition temperatures (Tg) of the blends were determined by DSC and the differences of the Tg values were smaller than the difference between those of pure PBSA and PTMC. In addition, the equilibrium melting points were depressed in the blends. According to these results, the PBSA/PTMC blends were determined as being partially miscible blends. The crystallization kinetics was investigated according to the Avrami equation. It was found that the incorporation of PTMC did not change the crystallization mechanism of PBSA. However, the crystallization rate decreased with the increase of PTMC contents. The change of crystallization kinetics is related with the existences of amorphous PTMC, the partial miscibility between PLLA and PTMC, and the changes of phase structures.  相似文献   
992.
Recent strategies to prepare “omniphobic” surfaces have demonstrated that minimizing contact angle hysteresis (CAH) is the key criterion for effectiveness. CAH is affected by chemistry and topography defects at the molecular and higher levels, thus most surfaces exhibit significant CAH. Preparative methods for stable coatings on smooth substrates with negligible CAH (<2°) for a broad range of liquids have not been reported. In this work, we describe a simple and rapid procedure to prepare omniphobic surfaces that are stable under pressure and durable at elevated temperatures. Consistent with theory, they exhibit sliding angles that decrease with liquid surface tension. Slippery omniphobic covalently attached liquid (SOCAL) surfaces are obtained through acid‐catalyzed graft polycondensation of dimethyldimethoxysilane. The smooth, stable, and temperature‐resistant coatings show extremely low CAH (≤1°) and low sliding angles for liquids that span surface tensions from 78.2 to 18.4 mN m?1.  相似文献   
993.
Janus membranes are an emerging class of materials having opposing properties at an interface. This structure results in selective and often novel transport characteristics. In this Minireview, a definition of the Janus membrane, beyond merely asymmetric materials, is introduced and common fabrication strategies are outlined. Also presented are current and potential applications in directional transport, switchable permeation, and performance optimization with detailed mechanisms.  相似文献   
994.
Nanoribbon‐shaped nanocomposites composed of conjugated polymer poly(3‐hexylthiophene) (P3HT) nanoribbons and plasmonic gold nanorods (AuNRs) were crafted by a co‐assembly of thiol‐terminated P3HT (P3HT‐SH) nanofibers with dodecanethiol‐coated AuNRs (AuNRs‐DDT). First, P3HT‐SH nanofibers were formed due to interchain π–π stacking. Upon the addition of AuNRs‐DDT, P3HT‐SH nanofibers were transformed into nanoribbons decorated with the aligned AuNRs on the surface (i.e., nanoribbon‐like P3HT/AuNRs nanocomposites). Depending on the surface coverage of the P3HT nanoribbons by AuNRs, these hierarchically assembled nanocomposites exhibited broadened and red‐shifted absorption bands of AuNRs in nIR region due to the plasmon coupling of adjacent aligned AuNRs and displayed quenched photoluminescence of P3HT. Such conjugated polymer/plasmonic nanorod nanocomposites may find applications in fields, such as building blocks for complex superstructures, optical biosensors, and optoelectronic devices.  相似文献   
995.
Biodegradable polymer electrolyte films based on poly(ε-caprolactone) (PCL) in conjunction with lithium tetrafluoroborate (LiBF4) salt and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4) ionic liquid were prepared by solution cast technique. The structural, morphological, thermal, and electrical properties of these films were examined using X-ray diffraction (XRD), optical microscopy (OM), differential scanning calorimetry (DSC), and impedance spectroscopy. The XRD and OM results reveal that the pure PCL possesses a semi-crystalline nature and its degree of crystallinity decreases with the addition of LiBF4 salt and EMIMBF4 ionic liquid. DSC analysis indicates that the melting temperature and enthalpy are apparently lower for the 40 wt% EMIMBF4 gel polymer electrolyte as compared with the others. The ambient temperature electrical conductivity increases with increasing EMIMBF4 concentration and reaches a high value of ~2.83?×?10?4 S cm?1 for the 85 PCL:15 LiBF4 + 40 wt% EMIMBF4 gel polymer electrolyte. The dielectric constant and ionic conductivity follow the same trend with increasing EMIMBF4 concentration. The dominant conducting species in the 40 wt% EMIMBF4 gel polymer electrolyte determined by Wagner’s polarization technique are ions. The ionic conductivity of this polymer electrolyte (~2.83?×?10?4 S cm?1) should be high enough for practical applications.  相似文献   
996.
GMA-SBRs with GMA contents in the range of 0.06–0.71 wt.% were synthesized and used to evaluate the properties of the silica composites for fuel-efficient tires. The chemical structures of the GMA-SBRs were analyzed using Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance (1H NMR), size exclusion chromatography (SEC), and differential scanning calorimetry (DSC). GMA-SBRs can enhance filler–rubber interaction through covalent bond formation between the silica filler and rubber molecules. After compounding, the cure characteristics and mechanical and dynamic properties of the GMA-SBR silica-filled composites were analyzed. The mechanical properties, including the Mooney viscosity, bound rubber, swelling ratio, and moduli, exhibited obvious differences with increasing GMA content. However, the optimum content of GMA in the GMA-SBR, in terms of dynamic properties such as the Payne effect which represents the change in dynamic modulus against the strain to determine the extent of filler flocculation and tan δ at 60 °C representing tire rolling resistance, was ~0.6 wt.%. These results are due to improved silica dispersion, resulting from increased covalent bond formation between GMA-SBR and the silica surface. This approach assists in the determination of functional group contents in functionalized emulsion styrene–butadiene rubber for fuel-efficient tires, leading to a decrease in vehicular greenhouse gas emission.  相似文献   
997.
Abstract

Liquid polybutadiene rubber (LPB) was blended with poly(lactic acid) (PLA) through reactive and non-reactive routes to enhance the toughness of the PLA. The reactively blended PLA (PBR10) was prepared by melt blending the PLA with the LPB in the presence of dicumyl peroxide (DCP), a radical initiator, while the PB10 was just melt blended without the DCP. Fourier transform infrared (FTIR) spectra and wide-angle X-ray diffraction (WAXD) patterns were used to study the molecular structure of the blends. Properties were investigated through universal testing machine (UTM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscope (SEM) analysis, and rheological measurements. The results indicated that the radical crosslinking by the DCP could increase the compatibility between the PLA and LPB and disperse the rubber particles at the nanoscale in the PLA matrix. As a result, the toughness and melt viscosity of the PLA was significantly enhanced through the reactive blending, which is promising for the practical application of the modified PLA in the area of packaging.  相似文献   
998.
This study aligned Ketjen black (KB) particles along one preferred direction in a polylactic acid (PLA) matrix using an oscillatory shear flow and investigated the effect of aligned KB on the electrical anisotropy. Under the oscillatory shear, the KB particles are aligned along the flow direction in the PLA matrix, resulting in an oriented conductive network. When the concentration of KB is in the range of 0.88–1.56 vol %, the electrical volume resistivity along the flow direction (ρ) decreases to ~3 × 104 Ω m and that perpendicular to the flow direction (ρ) remains at ~1 × 1010 Ω m, showing an extremely large electrical anisotropy, and the ρ/ρ value is 3–4 orders of magnitude higher than that of previously reported carbon‐nanotube‐based electrical anisotropic composites. This strong anisotropy is attributed to the preferential alignment of KB particles with lower percolation threshold for conductive path along the flow direction. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 369–373  相似文献   
999.
The undoped and Mg-doped ZnO ceramics have been successfully synthesized using the conventional solid state sintering method. The doping effect of MgO content on the structural properties of ZnO/MgO composites has been investigated by X-ray diffraction (XRD) and Raman spectroscopy. The XRD patterns reveal that all the samples are polycrystalline and have a prominent hexagonal crystalline structure with (002) and (101) as preferred growth directions. The formation of the hexagonal ZnMgO alloy phase and the segregation of MgO-cubic phase took place for an MgO composition x  20 wt%. This finding is in good agreement with the Raman spectroscopy measurements which prove the existence of multiple-order Raman peaks originating from ZnO-like and MgO phonons. The band gap energy and the carrier concentration of ZnO pellets were found to be dependent upon the Mg doping whose values vary from 3.287 to 3.827 eV and from 1.6 × 1017 to 5.2 × 1020 cm−3, respectively.  相似文献   
1000.
Structural evolution of poly(lactic acid) (PLA) upon uniaxial stretching was studied with in-situ polarized infrared spectroscopy measurements, and its structural change affected by annealing was also investigated. Band shifting was used to reflect the structural ordering process. It was found that the band at 1302 cm−1 always moves to low wavenumbers before crystallization, indicating the occurrence of intermolecular packing ordering. However, the band at 869 cm−1 shifts to high wavenumbers, which is related to the transition from the amorphous phase to the ordered phase. Interestingly, during stretching, the shifting for the band at 1302 cm−1 always occurs before that for the lower wavenumber band, whereas these two band shifts take place simultaneously under annealing. Based on the different characteristics of the structural evolution under stretching and annealing processes, a critical temperature was found at around 63 °C, which influences the effect weight of kinetic and thermodynamic factors to the crystallization behavior. The effect of the drawing temperature on crystallization and mechanical property of PLA films was also analyzed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号