首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   357706篇
  免费   63106篇
  国内免费   49990篇
化学   196568篇
晶体学   4093篇
力学   29424篇
综合类   5414篇
数学   80447篇
物理学   154856篇
  2024年   732篇
  2023年   7703篇
  2022年   12135篇
  2021年   14294篇
  2020年   14727篇
  2019年   11167篇
  2018年   15353篇
  2017年   16511篇
  2016年   17029篇
  2015年   15819篇
  2014年   20788篇
  2013年   31196篇
  2012年   36991篇
  2011年   38834篇
  2010年   27812篇
  2009年   27079篇
  2008年   23110篇
  2007年   25332篇
  2006年   23054篇
  2005年   14938篇
  2004年   11163篇
  2003年   9310篇
  2002年   8119篇
  2001年   7607篇
  2000年   5730篇
  1999年   5978篇
  1998年   3911篇
  1997年   3130篇
  1996年   2457篇
  1995年   2105篇
  1994年   1658篇
  1993年   1482篇
  1992年   1469篇
  1991年   1232篇
  1990年   1347篇
  1989年   1253篇
  1988年   3239篇
  1987年   2205篇
  1986年   567篇
  1985年   616篇
  1984年   395篇
  1983年   271篇
  1982年   218篇
  1981年   118篇
  1980年   57篇
  1979年   114篇
  1971年   58篇
  1959年   73篇
  1957年   88篇
  1936年   43篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
The chiral phase transition and equation of state are studied within a novel self-consistent mean-field approximation of the two-flavor Nambu-Jona-Lasinio model. In this newly developed model, modifications to the chemical μ and chiral chemical \begin{document}$\mu_5$\end{document} potentials are naturally included by introducing vector and axial-vector channels from Fierz-transformed Lagrangian to the standard Lagrangian. In the proper-time scheme, the chiral phase transition is a crossover in the \begin{document}$T-\mu$\end{document} plane. However, when \begin{document}$\mu_5$\end{document} is incorporated, our study demonstrates that a first order phase transition may emerge. Furthermore, the chiral imbalance will soften the equation of state of quark matter. The mass-radius relationship and tidal deformability of quark stars are calculated. The maximum mass and radius decrease as \begin{document}$\mu_5$\end{document} increases. Our study also indicates that the vector and axial-vector channels exhibit an opposite influence on the equation of state.  相似文献   
82.
Herein, we successfully construct the 3D biocompatible graphene through crosslinking 2D graphene nanosheet onto carbon fiber paper with poly(diallyldimethylammonium chloride) (PDDA) as anode of the alcohol biofuel cell. Compared with the bioanode without 3D graphene, the current density and output power of PDDA-graphene-ADH bioanode is increased by 23 % and 41 % at a high concentration of ethanol at pH 8.9, suggesting the stabilization role of graphene in enzyme loading. The study provides us a deep analysis on structures and performances of the bioanode incl. electrochemistry, X-ray photoelectron spectra, and atomic force microscopy images, which is significant to develop the new methods to construct 3D porous electrodes in energy conversion device.  相似文献   
83.
84.
85.
《中国化学快报》2022,33(10):4461-4477
In recent years, with the emergence of new pollutants, the effective treatment of wastewater has become very important. Persulfate-based advanced oxidation processes have been successfully applied to the treatment of wastewater, such as wastewater containing antibiotics, pharmaceuticals and personal care products, dyes, endocrine-disrupting chemicals, chlorinated organic pollutants, and phenolics, for the degradation of refractory organic contaminants. This paper summarizes the production of sulfate radicals, which can be generated by the activation of persulfate via conventional and emerging approaches. The existing problems of persulfate-based advanced oxidation processes were analyzed in detail, including residual sulfates, coexisting factors (coexisting inorganic anions and natural organic matter), and energy consumption. This paper proposes corresponding possible solutions to the problems mentioned above, and this paper could provide a reference for the application of persulfate-based advanced oxidation processes in actual wastewater treatment.  相似文献   
86.
Given their superior penetration depths, photosensitizers with longer absorption wavelengths present broader application prospects in photodynamic therapy (PDT). Herein, Ag2S quantum dots were discovered, for the first time, to be capable of killing tumor cells through the photodynamic route by near-infrared light irradiation, which means relatively less excitation of the probe compared with traditional photosensitizers absorbing short wavelengths. On modification with polydopamine (PDA), PDA-Ag2S was obtained, which showed outstanding capacity for inducing reactive oxygen species (increased by 1.69 times). With the addition of PDA, Ag2S had more opportunities to react with surrounding O2, which was demonstrated by typical triplet electron spin resonance (ESR) analysis. Furthermore, the PDT effects of Ag2S and PDA-Ag2S achieved at longer wavelengths were almost identical to the effects produced at 660 nm, which was proved by studies in vitro. PDA-Ag2S showed distinctly better therapeutic effects than Ag2S in experiments in vivo, which further validated the enhanced regulatory effect of PDA. Altogether, a new photosensitizer with longer absorption wavelength was developed by using the hitherto-unexplored photodynamic function of Ag2S quantum dots, which extended and enhanced the regulatory effect originating from PDA.  相似文献   
87.
88.
Incorporating nanoscale Si into a carbon matrix with high dispersity is desirable for the preparation of lithium-ion batteries (LIBs) but remains challenging. A space-confined catalytic strategy is proposed for direct superassembly of Si nanodots within a carbon (Si NDs⊂C) framework by copyrolysis of triphenyltin hydride (TPT) and diphenylsilane (DPS), where Sn atomic clusters created from TPT pyrolysis serve as the catalyst for DPS pyrolysis and Si catalytic growth. The use of Sn atomic cluster catalysts alters the reaction pathway to avoid SiC generation and enable formation of Si NDs with reduced dimensions. A typical Si NDs⊂C framework demonstrates a remarkable comprehensive performance comparable to other Si-based high-performance half LIBs, and higher energy densities compared to commercial full LIBs, as a consequence of the high dispersity of Si NDs with low lithiation stress. Supported by mechanic simulations, this study paves the way for construction of Si/C composites suitable for applications in future energy technologies.  相似文献   
89.
A unique nickel/organic photoredox co-catalyzed asymmetric reductive cross-coupling between α-chloro esters and aryl iodides is developed. This cross-electrophile coupling reaction employs an organic reductant (Hantzsch ester), whereas most reductive cross-coupling reactions use stoichiometric metals. A diverse array of valuable α-aryl esters is formed under these conditions with high enantioselectivities (up to 94 %) and good yields (up to 88 %). α-Aryl esters represent an important family of nonsteroidal anti-inflammatory drugs. This novel synergistic strategy expands the scope of Ni-catalyzed reductive asymmetric cross-coupling reactions.  相似文献   
90.
Herein, we propose the construction of a sandwich-structured host filled with continuous 2D catalysis–conduction interfaces. This MoN-C-MoN trilayer architecture causes the strong conformal adsorption of S/Li2Sx and its high-efficiency conversion on the two-sided nitride polar surfaces, which are supplied with high-flux electron transfer from the buried carbon interlayer. The 3D self-assembly of these 2D sandwich structures further reinforces the interconnection of conductive and catalytic networks. The maximized exposure of adsorptive/catalytic planes endows the MoN-C@S electrode with excellent cycling stability and high rate performance even under high S loading and low host surface area. The high conductivity of this trilayer texture does not compromise the capacity retention after the S content is increased. Such a job-synergistic mode between catalytic and conductive functions guarantees the homogeneous deposition of S/Li2Sx, and avoids thick and devitalized accumulation (electrode passivation) even after high-rate and long-term cycling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号