排序方式: 共有59条查询结果,搜索用时 15 毫秒
1.
The dissolution of hydrogen gas in vanadium-based alloys containing niobium, chromium and titanium was studied by measuring the equilibrium pressure, at various compositions, from 763 to 1125 K. Hydrogen followed Sieverts' law in all the alloys studied up to a hydrogen-to-metal atom ratio of 0.25. The values of the enthalpies of solution of hydrogen for these vanadium-based alloys ranged from −18.5 to −46.8 ± 1.5 kJ (mol H)−1 and the standard entropies of solution of hydrogen ranged from −57.4 to −62.6 ± 5.5 J K−1 (mol H)−1. The present results agree extremely well with a previous low temperature study of these alloys which employed an isopiestic technique to measure indirectly the equilibrium hydrogen pressures. 相似文献
2.
3.
4.
冲击后压缩设计许用值是复合材料飞机结构设计的一个非常重要的参数。本文通过分析常用的目视检测方法和飞机结构冲击能量统计结果,从凹坑深度和冲击能量截止值两方面定义了目视勉强可见损伤;根据民机设计兼顾安全性和经济性的特点,作者提出压缩设计许用值中的目视勉强可见损伤应综合考虑,慎重确定。文章还研究了复合材料层压板的抗冲击性能,从工程应用角度给出了结构冲击后压缩设计许用值的确定要点,即用小试样的冲击后压缩试验结果推导的基准系数和环境系数,对元件乃至典型结构件的冲击后压缩试验结果进行修正。 相似文献
5.
精确的波前探测是反射镜面型检测及光束波前畸变测量的重要依据,论文根据Shark-Hartmann理论对波前探测技术进行了模拟和实验研究。将平行光经过球面透镜/柱面透镜后形成的球面波/柱面波作为探测波前。实验采用商用的微透镜阵列和CCD搭建Shark-Hartmann传感器,利用实际光束作为参考光,避免了参考光的不准直性对实验的影响。模拟计算结果表明平均曲率误差为13.423 mm,实验结果实现了对球面/柱面/倾斜波的探测及复原。 相似文献
6.
CFD分析技术目前已经成为飞机设计的主要手段,国外主要飞机制造商依托自主知识产权的核心求解器从事气动专业相关工作,如美国波音公司自主开发的TRANAIR软件[1 ].一款能够成功应用到工程上的CFD工具必须满足计算快速、分析准确、操作简单、运行稳定、功能全面等5方面要求,因此开发了面向工程应用的CFD快速自动分析SUN程序[2 ],采用内外流耦合流场分析技术,实现从前处理、网格生成、流场求解到后处理全流程一体化分析,可对机身、机翼、挂架和短舱部件组合的任意构型飞机亚声速和跨声速流场进行快速分析,形成具有中国商飞自主知识产权的核心CFD快速求解器,实现气动设计领域关键核心技术自主可控,在中国商飞多个项目中已经得到初步应用、支撑了相关工作开展. 相似文献
7.
《Wave Motion》2017
Two waves are studied using perturbation analysis for their interactions in an one-dimensional periodic structure with quadratic nonlinearity. A first-order multiple-scales analysis along with numerical simulations on the full chain are used to understand the interaction of two waves when one is the sub- or super-harmonic of the other. The strength of quadratic nonlinearity affects the rate at which the energy is exchanged between the two waves. Depending on parameters and energy states, the interactions between the waves are periodic or whirling and result in quasi-periodic combined propagating waves with either phase drifts or weakly phase-locking properties. The analysis suggests the possibility of the existence of emergent wave harmonics. Due to quadratic nonlinearity, a very small amplitude subharmonic or superharmonic wave mode can drift in its phase, and then burst out with a larger amplitude as it circumnavigates a separatrix. Depending on the parameters and wave numbers, the amplitude of this emergent wave burst can have varying significance. 相似文献
8.
《International Journal of Solids and Structures》2005,42(9-10):2911-2928
We studied the microstructure evolution of a nickel-based superalloy, Waspaloy, subjected to tensile creep at 1073 K through monitoring of shear-wave attenuation and velocity using electromagnetic acoustic resonance (EMAR). Contactless transduction based on the Lorentz force mechanism is the key to establishing a monitor for microstructural change in the bulk of the metals with a high sensitivity. There is a clear relationship between the attenuation and the life fraction. In the interval, 35 to 40% of the creep life, attenuation experiences a peak, being independent of the applied stress. This novel phenomenon is interpreted in terms of drastic change in dislocation mobility and the coarsening of γ′-precipitates, which is supported by SEM and TEM observations. At this period, dense dislocations start tangling to γ′-precipitates and the coarsening and condensation of γ′-precipitates become saturated. The EMAR has a potential to assess the damage advance and to predict the remaining creep life of metals. 相似文献
9.
根据测试数据,分析模拟了铜铟镓硒(CIGS)薄膜光伏组件中电池的活性区域、非活性区域与封装材料之间界面的光学特性对组件的短路电流产生的影响。根据组件结构建立了光学模型,从光学模拟结果分析组件内的反射与吸收。发现电池前电极透明导电氧化物薄膜(TCO)与封装材料界面的反射不可忽视,提出通过在透明导电氧化物薄膜与封装材料之间添加减反射层,并以MgO作为膜层材料以降低活性区域的界面反射;模拟了在非活性区域一次反射光角度与二次反射的关系,由此分析了非活性区域反射面倾角、镜面反射与漫反射比例对光利用的影响。模拟结果显示,活性区域的减反层结构可降低透明导电氧化物薄膜表面的反射率1%以上,而通过在非活性面积区域制备光反射结构,理论上能够利用非活性区域光照超过50%。 相似文献
10.
Metal oxide semiconductors with hollow structure and morphology have attracted considerable attentions because of their promising application on gas sensors. In this paper, LaFeO3 hollow nanospheres have been prepared by using carbon spheres as templates in combination with calcination. Based on the observation of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), and transmission electron microscope (TEM), the structure and morphology of the products were characterized. It has been revealed that as-prepared LaFeO3 samples have a uniform diameter of around 300 nm and hollow structures with thin shells of about 30 nm consisting of numerous nanocrystals and nanopores. Owing to the hollow and porous structure, large surface area and more surface active sites, the sensor based on LaFeO3 hollow nanospheres exhibited high response, good selectivity and stability to formaldehyde gas (HCHO). It suggests that the as-prepared LaFeO3 hollow nanospheres are promising candidates for good performance formaldehyde sensor. 相似文献