首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2844篇
  免费   69篇
  国内免费   18篇
化学   849篇
晶体学   8篇
力学   1022篇
综合类   55篇
数学   439篇
物理学   558篇
  2024年   2篇
  2023年   63篇
  2022年   94篇
  2021年   61篇
  2020年   200篇
  2019年   57篇
  2018年   64篇
  2017年   211篇
  2016年   171篇
  2015年   144篇
  2014年   170篇
  2013年   111篇
  2012年   122篇
  2011年   72篇
  2010年   94篇
  2009年   108篇
  2008年   84篇
  2007年   88篇
  2006年   136篇
  2005年   102篇
  2004年   47篇
  2003年   94篇
  2002年   75篇
  2001年   114篇
  2000年   46篇
  1999年   128篇
  1998年   92篇
  1997年   43篇
  1996年   29篇
  1995年   25篇
  1994年   15篇
  1993年   28篇
  1992年   17篇
  1991年   17篇
  1990年   4篇
  1982年   1篇
  1979年   1篇
  1971年   1篇
排序方式: 共有2931条查询结果,搜索用时 244 毫秒
21.
《中国化学快报》2021,32(10):3221-3225
Electrochemical heterogeneous catalytic ozonation (E-catazone) is a promising and advanced oxidation technology that uses a titanium dioxide nanoflower (TiO2-NF)-coated porous Ti gas diffuser as an anode material. Our previous study has highlighted that the importance of the TiO2-NF coating layer in enhancing OH production and rapidly degrading O3-resistant drugs. It is well known that the properties of TiO2-NF are closely related to its sintering temperature. However, to date, related research has not been conducted in E-catazone systems. Thus, this study evaluated the effect of the sintering temperature on the degradation of the O3-resistant drug para-chlorobenzoic acid (p-CBA) using both experimental and kinetic modeling and revealed its influence mechanism. The results indicated that the TiO2-NF sintering temperature could influence p-CBA degradation and OH production. TiO2-NF prepared at 450 °C showcased the highest p-CBA removal efficiency (98.5% in 5 min) at a rate of 0.82 min−1, and an OH exposure of 8.41 × 10−10 mol L−1 s. Kinetic modeling results and interface characterization data revealed that the sintering temperature could alter the TiO2 crystallized phase and the content of surface-adsorbed oxygen, thus affecting the two key limiting reactions in the E-catazone process. That is, ≡TiO2 surface reacted with H2O to form TiO2-(OH)2, which then heterogeneously catalyzed O3 to form OH. Consequently, E-catazone with a TiO2-NF anode prepared at 450 °C generated the highest surface reaction rate (5.00 × 10−1 s−1 and 4.00 × 10-3 L mol-1 s−1, respectively), owing to its higher anatase content and adsorbed oxygen. Thus, a rapid O3-TiO2 reaction was achieved, resulting in an enhanced OH formation and a highly effective p-CBA degradation. Overall, this study provides novel baseline data to improve the application of E-catazone technology.  相似文献   
22.
Photocatalysis has been extensively studied due to its potential ability to avoid the excessive use of chemical reagents and reduce the energy consumption by employing solar energy. Moreover, to alleviate the reduction in the membrane permeation selectivity, separation efficiency, and membrane service life caused by the emerging micro-pollutants and membrane fouling, membrane technology is often coupled with microbial, electrochemical, and catalytic processes. However, although physical/chemical cleaning and membrane module replacement can overcome the inherent limitations caused by membrane fouling and other membrane separation processes, high operating costs limit their practical applications. In this review, common preparation methods for TiO2 photocatalytic membranes are described in detail, and the main approaches to enhancing their photocatalytic performance are discussed. More importantly, the mechanism of the TiO2 photocatalytic membrane antifouling process is elucidated, and some applications of photocatalytic membranes in other areas are described. This review systematically outlines future research directions in the field of photocatalytic membrane modification, including metal and non-metal doping, fabrication of heterojunction structures, control over reaction conditions, increase in hydrophilicity, and increase in membrane porosity.  相似文献   
23.
Epoxy-timber composites have received increasing attention during the last decades because there are many advantages related to their uses as construction materials in applications such as timber bridges. However, the durability of epoxy-timber composites under outdoor conditions has become a concern for many epoxy resins. This study evaluated the chemical, thermal, and mechanical properties of two cured epoxies, the product of the diglycidyl ether of bisphenol A with 2,4-trimethyl-1,6-hexanediamine (DGEBA-TMDA) and the analogous resin prepared with the hydrogenated diglycidyl ether of bisphenol A (HDGEBA-TMDA), each mixed with 2?wt. % calcium sulfate (CS). We hypothesized that the use of CS, as an inorganic UV absorber, could decrease undesirable effects arising from exposure to UV light, moisture, and extreme temperatures.

An accelerated aging chamber simulated natural weathering for 1, 2, 3, 4, and 6?months. Chemical changes in cured epoxy systems over time in the presence and absence of CS fillers were determined using Fourier transform infrared spectroscopy (FT-IR). Thermal degradation profiles before and after exposure to accelerated weathering were followed by thermogravimetric analysis (TGA). The glass transition temperatures (Tg) before and after accelerated weathering were measured, and the effect of accelerated weathering on the surface morphology of the epoxy systems was investigated by scanning electron microscopy (SEM). In the presence of CS, after 6?months accelerated weathering the tensile strength of DGEBA-TMDA reduced by 23.8?±?2.4%, compared to 46.5?±?5.5% in its absence, while the corresponding values for HDGEBA-TMDA were 21.4?±?2.1% and 28.7?±?1.8%.  相似文献   

24.
The synthesis of trifluoroacetaldehyde by vapor-phase oxidation of 2,2,2-trifluoroethanol using supported vanadium catalysts was studied. Significant differences were observed in the reaction outcomes resulting from different types of catalysts. The ZrO2- and Al2O3-supported catalyst demonstrated both high catalytic activity and selectivity. The addition of co-catalysts such as MoO3 or SnO2 improved catalytic performance (Selectivity: up to 91%; S.T.Y.: >200 g L−1 h−1). The experimental results on catalyst lifetime showed a marked decrease in the activity of the Al2O3-supported catalyst within tens of hours, while the ZrO2-supported catalyst showed little, if any, performance alterations for 2000 h.  相似文献   
25.
A simple, rapid, and sensitive bioelectrochemical immunoassay method based on magnetic beads (MBs) has been developed to detect polycyclic aromatic hydrocarbons (PAHs). The principle of this bioassay is based on a direct competitive enzyme-linked immunosorbent assay using PAH-antibody-coated MBs and horseradish peroxidase (HRP)-labeled PAH (HRP-PAH). A magnetic process platform was used to mix and shake the samples during the immunoreactions and to separate free and unbound reagents after the liquid-phase competitive immunoreaction among PAH-antibody-coated MBs, PAH analyte, and HRP-PAH. After a complete immunoassay, the HRP tracers attached to MBs were transferred to a substrate solution containing 3,3′,5,5′-tetramethylbenzidine (TMB) and hydrogen peroxide (H2O2) for electrochemical detection. The voltammetric characteristics of the substrate were investigated, and the reduction peak current of TMB was used to quantify the concentration of PAH. The different parameters, including the amount of HRP-PAH conjugates, the enzyme catalytic reaction time, and the pH of the supporting electrolyte that governs the analytical performance of the immunoassay have been studied in detail and optimized. The detection limit of 50 pg mL−1 was obtained under optimum experimental conditions. The performance of this bioelectrochemical magnetic immunoassay was successfully evaluated with tap water spiked with PAHs, indicating that this convenient and sensitive technique offers great promise for decentralized environmental applications.  相似文献   
26.
A close coupling between the structure and size of hematite flocs formed in suspension and the permeability of the cake that accumulates on ultrafiltration membranes is observed. Specific resistances of cakes formed from flocs generated under diffusion-limited aggregation conditions are at least an order of magnitude lower than those of cakes formed from flocs generated under reaction-limited aggregation conditions. Similar effects are observed whether the aggregation regime is controlled by salt concentration, pH, or added organic anions. This dramatic difference in cake resistance is considered to arise from the size and fractal properties of the hematite assemblages. The ease of fluid flow through these assemblages will be influenced both by the fractal dimension of the aggregates and by their size relative to primary particle size (since, for fractal aggregates, porosity increases as the size of the aggregate increases). The size and strength of aggregates are also important determinants of the relative effects of permeation drag, shear-induced diffusion, and inertial lift and result, in the studies reported here, in relatively similar rates of particle deposition for both rapidly and slowly formed aggregates. The results presented here suggest that control of cake permeability (and mass) via control of aggregate size and structure is an area with scope for further development though the nature and extent of compaction effects in modifying the fractal properties of aggregates generated in suspension requires attention. Copyright 1999 Academic Press.  相似文献   
27.
《Tetrahedron: Asymmetry》2005,16(20):3406-3415
An asymmetric synthesis of benzenesulfinates bearing a phosphonate group at the ortho-position, based on the diastereoselective oxidation of the corresponding sulfenates, has been developed. For this purpose, a number of sulfenates were prepared in high yields by TFFA-promoted condensation of different chiral alcohols with a suitable sulfenyl chloride precursor. Diastereomeric excesses were determined by 31P NMR spectroscopic data with the configuration of the newly created stereogenic centre being assigned through correlation and chemical studies. A practical synthesis of both enantiomers of diisopropyl (2-methylsulfinyl)phenylphosphonate 6 in enantiomeric excess close to 85% is also presented.  相似文献   
28.
29.
This paper describes a measurement technique that was successfully applied in a study of bed load transport of large spherical solid particles in a shallow and supercritical flow (Fr?=?2.59–3.17) down a steep slope. The experimental condition was characterized by the relatively large solid particle size compared to the flow depth (d p /h?=?0.23–0.35), and compared to the tracer diameter (d p /d t ?≈?130). The technique incorporated particle image velocimetry and particle tracking velocimetry (PTV) to simultaneously measure the characteristics of the two phases. In order to detect true solid particles and to distinguish them from each other and the unwanted objects, a particle characterization (PCR) algorithm based on Hough transform was employed. The output from the PCR process was utilized for PTV, as well as to generate the corresponding tracer images for special needs. Validation tests have confirmed the pixel accuracy and high reliability of the combined technique. Experimental results obtained with the developed technique include flow velocities, particle velocities, and concentration. The analysis has shown that the particle concentration profile followed an exponential relationship of the form similar to that of Rouse’s profiles, despite the large d p /h ratio. It also revealed the effect of phase interaction, as a low loading rate of light particles on the order of O(10?3) could yield a noticeable slowdown in the streamwise fluid velocity.  相似文献   
30.
A multiscale analysis of the electromechanical coupling in elastic dielectrics is conducted, starting from the discrete monomer level through the polymer chain and up to the macroscopic level. Three models for the local relations between the molecular dipoles and the electric field that can fit a variety of dipolar monomers are considered. The entropy of the network is accounted for within the framework of statistical mechanics with appropriate kinematic and energetic constraints. At the macroscopic level closed-form explicit expressions for the behaviors of amorphous dielectrics and isotropic polymer networks are determined, none of which admits the commonly assumed linear relation between the polarization and the electric field. The analysis reveals the dependence of the macroscopic coupled behavior on three primary microscopic parameters: the model assumed for the local behavior, the intensity of the local dipole, and the length of the chain. We show how these parameters influence the directional distributions of the monomers and the hence the resulting overall response of the network. In particular, the dependences of the polarization and the polarization induced stress on the deformation of the dielectric are illustrated. More surprisingly, we also reveal a dependence of the stress on the electric field which stems from the kinematic constraint imposed on the chains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号