首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3890篇
  免费   219篇
  国内免费   97篇
化学   2303篇
晶体学   73篇
力学   138篇
数学   69篇
物理学   1623篇
  2024年   8篇
  2023年   221篇
  2022年   87篇
  2021年   112篇
  2020年   214篇
  2019年   119篇
  2018年   119篇
  2017年   189篇
  2016年   248篇
  2015年   171篇
  2014年   176篇
  2013年   167篇
  2012年   186篇
  2011年   101篇
  2010年   186篇
  2009年   168篇
  2008年   75篇
  2007年   130篇
  2006年   205篇
  2005年   165篇
  2004年   113篇
  2003年   131篇
  2002年   135篇
  2001年   193篇
  2000年   61篇
  1999年   153篇
  1998年   82篇
  1997年   49篇
  1996年   33篇
  1995年   39篇
  1994年   26篇
  1993年   21篇
  1992年   21篇
  1991年   23篇
  1990年   24篇
  1989年   32篇
  1988年   23篇
排序方式: 共有4206条查询结果,搜索用时 125 毫秒
991.
We present a QM/MM method for modeling metal/organic interfaces, which incorporates contributions from long‐range electron correlation, characteristic to metals and non‐bonded interactions in organic systems. This method can be used to study structurally irregular systems. We apply the method to model finite size domains of self‐assembled monolayers on the gold (111) surface and discuss the influence of boundary effects on the electrostatic and electronic properties of these systems. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   
992.
An international intercomparison involving eight national metrology institutes (NMIs) was conducted to establish their current measurement capabilities for determining five selected congeners from the brominated flame retardant classes polybrominated diphenyl ethers and polybrominated biphenyls. A candidate reference material consisting of polypropylene fortified with technical mixtures of penta-, octa- and decabromo diphenyl ether and decabromo biphenyl, which was thoroughly assessed for material homogeneity and stability, was used as study material. The analytical procedures applied by the participants differed with regard to sample pre-treatment, extraction, clean-up, employed calibrants and type of calibration procedure as well as regarding analytical methods used for separation, identification and quantification of the flame retardant congeners (gas chromatography coupled to an electron capture detector (GC-ECD), gas chromatography-mass spectrometry in the electron ionisation mode (GC-EI-MS), gas chromatography-mass spectrometry in the electron capture negative ionisation mode (GC-ECNI-MS), and liquid chromatography-inductive coupled plasma-mass spectrometry (LC-ICP-MS)). The laboratory means agreed well with relative standard deviations of the mean of means of 1.9%, 4.8%, 5.5% and 5.4% for brominated diphenyl ether (BDE) 47, 183 and 209 and for the brominated biphenyl (BB) congener 209, respectively. For BDE 206, a relative standard deviation of 28.5% was obtained. For all five congeners, within-laboratory relative standard deviations of six measurements obtained under intermediate precision conditions were between 1% and 10%, and reported expanded measurements uncertainties typically ranged from 4% to 10% (8% to 14% for BDE 206). Furthermore, the results are in good agreement with those obtained in the characterization exercise for determining certified values for the flame retardant congeners in the same material. The results demonstrate the state-of-the-art measurement capabilities of NMIs for quantifying representative BDE congeners and BB 209 in a polymer. The outcome of this intercomparison (pilot study) in conjunction with possible improvements for employing exclusively calibrants with thoroughly assessed purity suggests that a key comparison aiming at underpinning calibration and measurement capability (CMC) claims of NMIs can be conducted.
Figure
Mass fraction of deca-brominated diphenyl ether (BDE 209) in the polypropylene study material analysed in the international intercomparison CCQM-P114  相似文献   
993.
Semiconductor detectors whose surfaces are coated with neutron-reactive material can be made to detect thermal neutrons, but with efficiencies only of a few percent. However, perforating the semiconductor material, filling the perforations with neutron-reactive material, and then coating the detector surface can lead to neutron detectors of much higher thermal neutron detection efficiencies, perhaps approaching or exceeding 50%. Several perforated semiconductor neutron detectors have been constructed, both for dosimetry and for position-sensitive neutron detection. The characterization of prototype devices based on these detectors is described.  相似文献   
994.
We have measured the thermal conductivity of bulky pellets made of various boron nitride (BN)-based nanomaterials, including spherical nanoparticles, perfectly structured, bamboo-like nanotubes, and collapsed nanotubes. The thermal conductivity strongly depends on the morphology of the BN nanomaterials, especially on the surface structure. Spherical BN particles have the lowest thermal conductivity while the collapsed BN nanotubes possess the best thermoconductive properties. A model was proposed to explain the experimental observations based on the heat percolation passage considerations.  相似文献   
995.
LuFeO3 ceramics were prepared, and the dielectric characteristics were investigated together with the structure. A giant dielectric constant step (8000 at 10 kHz, 7200 at 100 kHz, and 4000 at 1 MHz) very similar to that in LuFe2O4 was observed. The dielectric constant dropped quickly when the temperature decreased through a critical temperature which increased significantly when the frequency increased. A very high relaxor-like dielectric peak with strong frequency dispersion was also observed in a higher temperature range. Two obvious corresponding dielectric relaxation peaks were observed on the curve of dielectric loss vs temperature, and all these dielectric relaxations followed the Arrhenius law. The Fe2+/Fe3+ mixed-valence structure and the oxygen vacancy primarily governed these relxor-like dielectric behaviors. However, the present ceramics are not relaxor ferroelectric.  相似文献   
996.
997.
This article describes the properties of the carbon fibers that were used during the ground calibration of the High Frequency Instrument of the Planck satellite. It focuses on the properties of this new device used as radiation sources, and on the modelling of its thermal behaviour. Experimental data are presented and successfully compared with the proposed theory. Their small time constant, their stability and their emission spectrum pointing in the submm range make these fibers a very useful tool for characterizing FIR instruments.  相似文献   
998.
New water‐soluble hyperbranched polyfluorenes bearing carboxylate side chains have been synthesized by the simple “A2 + B2 + C3” protocol based on Suzuki coupling polymerization. The linear polyfluorene analogue LPFA was also synthesized for comparative investigation. The optical properties of the neutral precursory polymers in CHCl3 and final carboxylic‐anionic conjugated polyelectrolytes in buffer solution were investigated. The obtained hyperbranched polyelectrolyte HPFA2 with lower content of branch unit (2%) showed excellent solubility and high fluorescence quantum yield (?F = 89%) in aqueous solution. Fluorescence quenching of HPFA2 by different metal ions was also investigated, the polyelectrolyte showed high selectivity for Hg2+ and Cu2+ ions relative to other various metal ions in buffer solution. The Stern‐Volmer constant Ksv was determined to be 0.80 × 106 M?1 for Hg2+ and 3.11 × 106 M?1 for Cu2+, respectively, indicating the potential application of HPFA2 as a highly selective and sensitive chemosensor for Hg2+ and Cu2+ ions in aqueous solution. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3431–3439, 2010  相似文献   
999.
Hole-rich Li4Ti5O12 composites are synthesized by spray drying using carbon nanotubes as additives in precursor solution, subsequently followed calcinated at high temperature in air. The structure, morphology, and texture of the as-prepared composites are characterized with XRD, Raman, BET and SEM techniques. The electrochemical properties of the as-prepared composites are investigated systematically by charge/discharge testing, cyclic voltammograms and AC impedance spectroscopy, respectively. In comparison with the pristine Li4Ti5O12, the hole-rich Li4Ti5O12 induced by carbon nanotubes exhibits superior electrochemical performance, especially at high rates. The obtained excellent electrochemical performances of should be attributed to the hole-rich structure of the materials, which offers more connection-area with the electrolyte, shorter diffusion-path length as well faster migration rate for both Li ions and electrons during the charge/discharge process.  相似文献   
1000.
ZnO, ZnO:Cu and ZnO:Cu:Graphene nanopowders were synthesized via a facile wet chemical method. The XRD studies show that the synthesized samples have hexagonal wurtzite structure. It is found that graphene addition induces a decrease in crystallite size. UV–vis absorption spectra of the samples show sharp absorption edges around 380 nm. Photoluminescence studies reveal that the incorporation of copper and graphene in ZnO facilitates the efficient photo generated electron–hole pair separation. It is found that the ZnO:Cu and ZnO:Cu:Graphene nanopowder exhibit improved photocatalytic efficiency for the photodegradation of Methylene Blue (MB) under visible light irradiation. Moreover, improved antibacterial activity of ZnO:Cu:Graphene nanopowder against Escherichia coli and Staphylococcus aureus bacteria is observed.  相似文献   
[首页] « 上一页 [95] [96] [97] [98] [99] 100 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号