首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   0篇
  国内免费   4篇
化学   40篇
物理学   13篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   4篇
  2011年   12篇
  2010年   5篇
  2009年   9篇
  2008年   2篇
  2007年   4篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  1999年   2篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
11.
采用EDTA-柠檬酸法合成了中温固体氧化物燃料电池阴极材料Sr_(1.5)La_(0.5)Mn_(1-x)Co_xO_4(SLMCOx),并利用粉末X射线衍射(XRD)、X射线光电子能谱(XPS)以及电化学交流阻抗谱(EIS)进行表征。结果表明,该材料与Ce0.9Gd0.1O1.95(CGO)在1 200℃烧结12 h不发生化学反应。随着Co掺入量的增加,氧化物中Mn~(3+)和Co~(2+)含量增多,晶格氧含量降低,晶格畸变率增大。交流阻抗谱(EIS)测试结果显示,钴的掺杂明显降低电极的极化电阻,其中Sr_(1.5)La_(0.5)Mn_(0.7)Co_(0.3)O_4阴极在700℃空气中的极化电阻为0.62Ω·cm~2,明显小于Sr_(1.5)La_(0.5)MnO_4阴极在750℃的极化电阻(1.5Ω·cm~2),表明钴掺杂的Sr_(1.5)La_(0.5)Mn_(1-x)CoxO_4是一种潜在的IT-SOFC阴极材料。  相似文献   
12.
《Solid State Sciences》2012,14(7):914-919
Indium oxide co-doped with tin and zinc (ITZO) ceramics have been successfully prepared by direct sintering of the powders mixture at 1300 °C. This allowed us to easily fabricate large highly dense target suitable for sputtering transparent conducting oxide (TCO) films, without using any cold or hot pressing techniques. Hence, the optimized ITZO ceramic reaches a high relative bulk density (∼ 92% of In2O3 theoretical density) and higher than the well-known indium oxide doped with tin (ITO) prepared under similar conditions. All X-ray diagrams obtained for ITZO ceramics confirms a bixbyte structure typical for In2O3 only. This indicates a higher solubility limit of Sn and Zn when they are co-doped into In2O3 forming a solid-solution. A very low value of electrical resistivity is obtained for [In2O3:Sn0.10]:Zn0.10 (1.7 × 10−3 Ω cm, lower than ITO counterpart) which could be fabricated to high dense ceramic target suing pressure-less sintering.  相似文献   
13.
Several Niobium oxides of formula Ba2LnFeNb4O15 (Ln = La, Pr, Nd, Sm, Eu, Gd) with the “tetragonal tungsten bronze” (TTB) structure have been synthesised by conventional solid state methods. The neodymium, samarium and europium compounds are ferroelectric with Curie temperature ranging from 320 to 440 K. The praseodymium and gadolinium compounds behave as relaxors below 170 and 300 K respectively. The praseodymium, neodymium, samarium, europium and gadolinium compounds exhibit magnetic hysteresis loops at room temperature originating from traces of a barium ferrite secondary phase. The presence of both ferroelectric and magnetic hysteresis loops at room temperature allows considering these materials as composites multiferroic. Based on crystal-chemical analysis we propose some relationships between the introduction of Ln3+ ions in the TTB framework and the chemical, structural and physical properties of these materials.  相似文献   
14.
The total conductivity of BaCe0.9Y0.1O3 − δ material was measured under air, in a large p(H2O) range up to 0.30 bar. The defect concentrations (OHO·, VO· · and h·) and electrical conductivities were calculated on the basis of chemical constants (diffusion coefficients and equilibrium constants reported in the past literature) and compared to the experimental data. Protonic transport number as high as 0.8 was found at 700 °C, under air containing 0.30 bar of water, which allows a possible extension of the protonic temperature range of this material using water rich atmosphere. In-situ Raman spectroscopy under wet and dry air was performed from room temperature up to 700 °C in two wavenumber ranges. At low wavenumber, characteristic of lattice vibrations, this study clearly shows that no significant changes occur upon water insertion while at high wavenumbers, characteristic of OH vibrations, two contributions to the OH vibrations were found. This is discussed in terms of proton environment and transient hydrogen bonds. Moreover, this in situ study confirms that, at moderate p(H2O), water insertion becomes significant at temperature below 650 °C.  相似文献   
15.
Uranium copper aluminide, UCu6.68Al4.32, has been synthesized by arc-melting, followed by annealing at 600 °C. The phase belongs to the tetragonal BaCd11-type (space group I41/amd, Pearson symbol tI48, Z = 4, a = 10.2471(4) and c = 6.5883(3) Å, V = 691.78(4) Å3). Electrical resistivity, specific heat and magnetic susceptibility data, measured from room temperature down to ∼3 K do not show any magnetic phase transition. The compound stays in its paramagnetic state, and at high temperatures can be adjusted according to the modified Curie–Weiss model (μeff ∼ 2.7 μB/U-atom). The Sommerfeld value of the specific heat, γ ∼ 98 mJ/molK2, is well above the values derived for simple metallic systems. In this context, with the overall shape of the temperature dependent electrical resistivity, spin fluctuations can be concluded, dominating the ground state behaviour in UCu6.68Al4.32.  相似文献   
16.
17.
Al-doped ZnO powders were synthesised by a Pechini process in order to obtain visible non-absorbent and near-Infrared absorbent particles. Firstly, it has been shown that synthesis under argon combined with the lowest synthesis temperatures (700 °C) allows getting the optimal properties for pure ZnO compounds due to creation of n-type defects segregated on oxide grain surface (Zn/O ratio superior to 1). Nevertheless, the near-Infrared absorption properties of the pure ZnO compounds remain low. The Al3+ doping of ZnO compounds was then investigated. The Al solubility limit inside ZnO doped compounds decreases drastically with the grain size, i.e. with the synthesis temperature. Then, the Al cations distribution varies inside ZnO grains, Al3+ segregation at the grain surfaces taking place for high synthesis temperatures. The optimal optical properties (high near-Infrared absorption) are reached combining Al-doping and adequate synthesis conditions: annealing under argon at low temperatures. In these conditions, the highest extrinsic (via Al doping) and intrinsic n-types defects rates are indeed reached.  相似文献   
18.
Periodic mesoporous Eu(3+) doped titania materials were obtained through the EISA (Evaporation Induced Self Assembly) process. Eu(3+) ions, entrapped within the semi-crystalline walls of the highly porous framework, appear to be advantageous during the probing of surface photochemical reactions. Its emission intensity is very sensitive to the presence of physisorbed molecules, in gas or liquid phase, that reside within the pores. In particular, strong fluctuations in intensity of the (5)D(0)→(7)F(2) transition were observed under UV light exposure on the time scale of tens of seconds. The emission modulation dynamics show a strong correlation with the crystallinity of the titania matrix. Correlation of the emission with the photocatalytic activity of the semiconductor for photodegradation of an organic molecule is observed. A model is proposed to describe the involved mechanisms.  相似文献   
19.
《Solid State Ionics》2009,180(40):1652-1659
The synthesis and structural properties of the layered oxide Li2MnO3 have been studied in details. It represents a key for a better understanding of the complex structural evolutions pointed out in the materials like Li(Li,Ni,Mn,Co)O2 when they are used as positive electrode materials in lithium-ion batteries. Li2MnO3 samples were prepared either via coprecipitation or via a two step solid state reaction followed by different annealing treatments. Using X-ray and electron diffraction in combination with diffraction data simulations, we show that in function of the synthesis conditions, Li2MnO3 is obtained with various degrees of disorder, along the c monoclinic direction, in the stacking of the ordered Li1/3Mn2/3 sheets within the cfc oxygen packing. We show that this disorder decreases when the synthesis temperature increases but the synthesis of a material free of stacking faults is not possible with these synthesis routes. Finally, the similarities between the evolutions pointed out in Li2MnO3 due to the synthesis conditions and those previously observed in the materials like Li(Li,Ni,Mn,Co)O2 related to the evolution of the cations distribution in the slabs are underlined.  相似文献   
20.
An hydrogenated nitrogen-rich graphitic carbon nitride, structurally related to the theoretical graphitic phase of C3N4, has been synthesized in a bulk well-crystallized form. This new material was prepared by thermal decomposition of thiosemicarbazide up to 600 °C at ambient pressure under nitrogen flow. Its composition was determined by elemental combustion analysis. Powder X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy and C13 MAS NMR characterizations were performed. This material can be schematically described with a two-dimensional framework and a composition close to C3N4.17H1.12. In this nitrogen-rich material, C3N3 voids are fully occupied by water molecules which are strongly trapped into the material. A loss of crystallinity associated with a modification of the thermal behavior is observed when the amount of trapped molecules decreases in the graphitic material, order being damaged both between and in the graphitic planes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号